QN	TYBSc(Mathematics) Subject: MTH-506(B):Number Theory Question Bank	ANS
1)	Difference of two distinct prime numbers is	В
	A) odd and prime B) even and composite C) neither prime nor composite D) all of the above	
2)	A solution of Diophantine equation $10x + 6y \equiv 110$ is A) $(7,5)$ B) $(8,5)$ C) $(6,5)$ D) none of the above	В
3)	If gcd of two numbers is 1 , then the two numbers are said to be	В
	A) prime numbers B) co-prime numbers C) composite numbers D) rational numbers	
4)	Euclid's algorithm is used for finding	A
	A) gcd of two numbers B) gcd of more than two numbers C) lcm of two numbers D) none of the above	
5)	A linear Diophantine equation ax + by = c has a solution iff d c where d is	В
	A) gcd(a,c)B) gcd(a,b) C)gcd(b,c) D)lcm(a,b)	
6)	Which of the following is an odd composite number?	В
	A) 83 B) 95 C) 67 D) 37	
7)	What is last digit of 2 ¹⁰⁰ is	
0)	A) 2 B) 4 C)6 D) 8	C
	An integer p > 1 is called a , if its only positive divisors are 1 and p. A) composite number B) prime number C) rational number D) none of the above	В
9)	The number of primes lies between 1 and 50 =	A
'	A) 15 B) 12 C) 16 D) 17	
10)	Which one of the following is a prime number?	С
	A) 161 B) 171 C) 173 C) 221	

11)	System of linear congruences has solutions	В
	A) Infinite B) unique C) both A and B D) none of the above	
12)	Let d = gcd (a, n) then $ax \equiv b \pmod{n}$ has solution if and only if	В
	A) b d B) d b C) d a D) d n	
13)	The congruence $ax \equiv b \pmod{n}$ is called	A
	A) linear congruence B) quadratic congruence	
	C) Cubic Congruence D) none of the above	
14)	The number 5233779 is divisible by	С
	A) 11 B) 5 C)9 D) 7	
15)	What is the remainder when 48 is divided by 3?	A
	A) 0 B) 3 C) 16 D) 48	
16)	The only prime of the form $N^3 - 1$ is	С
	A) 3 B) 5 C) 7 D) 11	
17)	Which of the following is true ?	D
	A) $gcd(4,5) = 5$ B) $gcd(4,5) = 4$ C) $gcd(4,5) = 3$ D) $gcd(4,5) = 1$	
	Every even integer greater than 2 can be written as the sum of two primes is	В
	known as	
	A) Fermat's number B) Goldbach conjecture C) Mersenne primes D) none of the above	
		<u> </u>
19)	How many different factors does 48 have excluding 1 and 48? A) 12 B) 4 C) 8 D) 10	C
00)		
20) 	The number $\sqrt{2}$ is	A
0.4	A) irrational B) rational C) prime D) none of the above	
21)		C
	A) 2 B) 100 C) 10 D) none of the above	
22)	When a≡b(mod n) then remainder of a and b when divided by n are	A
	A) Same B) different D) none of the above	

23) a≡b(mod n) means	C		
A) n (a - b) B) a = b + qn			
C) both A and B D) none of the above			
24) If a≡b(mod n) and b≡c(mod n) then A) ac ≡ bc(mod n) B) a ≡ c(mod n) C) both A and B. D) none of the above	В		
25) What is the remainder when 1! + 2! + 3! + 4! is divided by 12	? B		
A) 0 B) 9 C) 12 D) 3			
26) When 16! is divided by 17 then remainder is	В		
A) 1 B) -1 C) 0 D) none of the above			
27) The first perfect number is	A		
A) 6 B) 24 C) 8 D) 4			
28) When 5 ¹⁰ is divided by 11, the remainder is	C		
A) 5 B) 0 C) 1	D) 11		
29) If (p - 1)! ≡ -1 (mod p) then p is a	D		
A) composite number B) odd number C) finite number D) prime number		
30) Which of the following is a perfect number?			
A) 28 B) 27 C) 26 D) 25			
31) A composite number n is called pseudo prime if	C		
A) n (2 ⁿ +1) B) n (2 ⁿ -1) C) n (2 ⁿ -2) D) none of the abo	ve		
32) If a ≡ b (mod n) then A) b ≡ a (mod n) B) ac ≡ bc (mod cn) C) a ^k ≡ b ^k (mod n) D) all of the above	D		
33) If ax ≡ b (mod n) and gcd (a , n) = 1 then system has so	utions modulo n. B		
A) n B) 1 C) a D)	b		
34) A number when divided by 2 ,3 ,or 5 gives remainder 1. This A) 31 B) 47 C) 49 D) 53	number is A		
35) The solution of the linear congruence $4x \equiv 5 \pmod{9}$ is	В		

	A) 6 (mod 9) B) 8 (mod 9) C) 9 (mod 9) D) none of the above	
	The numbers 2 ⁿ -1, n>1 are called as A) perfect numbers B) Mersenne numbers C) Fermat numbers D) none of the above	В
37)	The last digit of Fermat's number F_n , $n \ge 2$ is	С
38)	A) 1 B) 5 C) 7 D) 10 For m > n \geq 0, the Fermat's numbers F_m and F_n are	A
30)		11
	A) relative prime B) composite number	
	C) even number D) odd number	
39)	The Mersenne number M ₁₉ is A) perfect number B) prime number D) pseudo prime number C) composite number	В
40)	If 2 ⁿ ≡ 2 (mod n) then n is called as A)Prime number B) pseudo prime number C) odd number. D) even number	В
41)	If for some integer k > 1, 2 ^k -1 is a prime then 2 ^(k-1) (2 ^k -1) is A)Fermat number B) perfect number C) Mersenne number D) none of the above	В
42)	The prime factors of 2 ¹¹ -1 are A) 89, 23 B) 45, 46 C) 56, 33 D) 57, 38	A
43)	An integer having the remainders 3 ,11, 15 when divided by 10, 13, 17	В
	respectively is	
	A) 1003 B) 1103 C) 1203 D) 1303	
44)	Which of the following is a Mersenne prime number? A) M_6 B) M_7 C) M_4 D) M_8	В
45)	Let p be a prime and ab ≡ 1 (mod p) with b ≡ a (mod n) then	C
,	A) $ab \equiv a \pmod{p}$ B) $b^2 \equiv a \pmod{p}$ C) $a^2 \equiv 1 \pmod{p}$ D) none of the above	

46)	Which of the following is a prime Fibonacci number? A) 5 B) 7 C) 11 D) 17	A
47)	Two successive odd integers p and p+2 which are primes are called A) Pseudo primes B) twin primes C) Mersenne primes D) none of the above	В
48)	If p is prime and p not divides a then A) $a^{p-1}\equiv 1\pmod{p}$ B) $a^p\equiv 0\pmod{p}$ C) $a^p\equiv 1\pmod{p}$ D) none of the above	A
49)	The integer of the form 2 ²ⁿ +1, n ≥ 0 is called as A) Perfect number B) Fermat number C) Mersenne number D) none of the above	В
50)	Which of the following is not a Mersenne prime number?	С
) M_3 B) M_2 C) M_4 D) M_5	