Q.N		An
	TYBSc(Mathematics)	
	Subject:-MTH-501:Metric Spaces	
	Subject. Mili Southeette Spaces	
	Question Bank	
1.	In Discrete Metric space (X, d) , $d(x, y) = 0$, if	A
	a. $x = y$	
	b. $x < y$	
	$\begin{array}{ccc} c. & x > y \\ d. & x \neq y \end{array}$	
2.	d. $x \neq y$ The Set A is countable if A is	C
۷.	a. Finite	
	b. Denumerable	
	c. either finite or denumerable	
	d. None of These	
3.	If a set A is equivalent to the set of natural numbers, then A is set.	A
	a. Denumerable	
	b. Infinite	
	c. Uncountable	
	d. None of These.	
4.	The set \mathbb{Z} of integers is	B
	a. Finite	
	b. Denumerable	
	c. Not Denumerable	
5.	d. None of These	D
5.	A proper subset of Countable set is a. Uncountable	В
	b. Countable	
	c. Infinite	
	d. None of These	
6.	The set $\mathbb{Q} \times \mathbb{Q}$ is	В
	a. Finite	
	b. Denumerable	
	c. Not denumerable	
	d. None of These	
7.	If $\rho: M \times M \to [0, \infty)$ is pseudo metric in M then which of the following is a false	C
	statement?	
	a. $\rho(x,y) = \rho(y,x), \forall x,y \in M$	
	b. $\rho(x,y) \ge 0$, $\forall x,y \in M$	
	c. $\rho(x,y) = 0 \Rightarrow x = y, \forall x,y \in M$	
8.	$d. \ \rho(x,y) \le \rho(x,z) + \rho(z,y), \forall x,y,z \in M$	D
٥.	If $d: M \times M \to [0, \infty)$ defined as $d(A, B) = \det A - \det B $, $\forall A, B \in M$ where M is set of all $n \times n$ matrices over reals then	В
	a. d is a metric on M	
	b. d is pseudo metric on M	
	c. Both a and b	
	d. None of These	
9.	If $f: A \to B$ is one-one function and $f(a) = f(b)$ then	D
- •	a. $a \neq b$	
	b. $a > b$	
	c. $a < b$	
	d. $a = b$	1

10.	A set A is said equivalent to a set B if $f: A \rightarrow B$ is	C
	a. One-one	
	b. Onto	
	c. Both a and b	
	d. None of These	
11.	If a Cauchy sequence has a convergent subsequence then it is	В
	a. divergent	
	b. convergent	
	c. Both convergent and divergent	
	d. Not convergent	
12.	Anysubset in a metric space is bounded.	В
	a. infinite	
	b. finite	
	c. finite and infinite both	
	d. None of these	
13.	In a metric space (M, ρ) , an open sphere of radius r about a , $S(a, r) = \cdots$	D
	a. $\{x \in M : \rho(x, a) \le r\}$	
	b. $\{x \in M : \rho(x, a) \neq r\}$	
	c. $\{x \in M : \rho(x,a) > r\}$	
	d. $\{x \in M : \rho(x,a) < r\}$	
14.	In a metric space (M, ρ) , an closed sphere of radius r about a , $S[a, r] = \cdots$	A
17.	a. $\{x \in M : \rho(x, a) \le r\}$	A
	b. $\{x \in M : \rho(x, a) \neq r\}$	
	c. $\{x \in M : \rho(x,a) > r\}$	
1.5	d. $\{x \in M : \rho(x, a) < r\}$	
15.	The open sphere $S(x_0, r)$ for usual metric is	В
	a. (x_0, r)	
	b. $(x_0 - r, x_0 + r)$	
	c. $[x_0 - r, x_0 + r]$	
	$d. [x_0, r]$	
16.	Let (M, ρ) be a metric space and $a \in M$ them the set $\{x \in \rho(x, a) \le r\}$ is called	C
	a. Open Set	
	b. Closed Set	
	c. Closed Sphere	
	d. Open Sphere	
17.	If A is an open set in a metric space, (M, ρ) , then A^{C} is in (M, ρ)	A
	a. Closed Set	
	b. Open Set	
	c. Both a and b	
	d. None of these	
18.	In Interval [a, b] in the usual metric space is	В
	a. Open set	
	b. Closed Set	
	c. Half open Set	
	d. Hale Closed Set	
19.	If A and B are open subset of \mathbb{R} , then $A \times B$ is	A
	a. Open in \mathbb{R}^2	
	b. Open in R	
	c. Closed in \mathbb{R}	
	d. Closed in \mathbb{R}^2	
20.	The characteristic function χ_G is at each point of G. Where G is open set in \mathbb{R} .	A
	a. Continuous	
	b. Discontinuous	
	c. Not continuous	
	c. Not continuous	

 d. None of these 21. If f and g are continuous real valued functions on the metric space X. Then the set A = {x ∈ X : f(x) < g(x)} is a. Closed b. Half-open c. Open d. Half-closed 22. If a ∈ ℝ then [a, ∞) is a subset of ℝ. a. Open b. Closed c. Half-open d. Half Closed 23. A function f: X₁ → X₂ is called as isometry if a. d₁(x, y) ≠ d₂(f(x), f(y)) ∀x, y ∈ X₁ 	В
$\{x \in X : f(x) < g(x)\} \text{ is } \dots$ a. Closed b. Half-open c. Open d. Half-closed 22. If $a \in \mathbb{R}$ then $[a, \infty)$ is a subset of \mathbb{R} . a. Open b. Closed c. Half-open d. Half Closed 23. A function $f: X_1 \to X_2$ is called as isometry if	
 a. Closed b. Half-open c. Open d. Half-closed 22. If a ∈ ℝ then [a, ∞) is a subset of ℝ. a. Open b. Closed c. Half-open d. Half Closed 23. A function f: X ₁ → X ₂ is called as isometry if	В
 b. Half-open c. Open d. Half-closed 22. If a ∈ ℝ then [a, ∞) is a subset of ℝ. a. Open b. Closed c. Half-open d. Half Closed 23. A function f: X ₁ → X ₂ is called as isometry if	В
 c. Open d. Half-closed 22. If a ∈ ℝ then [a, ∞) is a subset of ℝ. a. Open b. Closed c. Half-open d. Half Closed 23. A function f: X₁ → X₂ is called as isometry if 	В
 d. Half-closed 22. If a ∈ ℝ then [a, ∞) is a subset of ℝ. a. Open b. Closed c. Half-open d. Half Closed 23. A function f: X₁ → X₂ is called as isometry if 	В
 22. If a ∈ R then [a, ∞) is a subset of R. a. Open b. Closed c. Half-open d. Half Closed 23. A function f: X₁ → X₂ is called as isometry if 	В
 a. Open b. Closed c. Half-open d. Half Closed 23. A function f: X ₁ → X ₂ is called as isometry if	В
 b. Closed c. Half-open d. Half Closed 23. A function f: X ₁ → X ₂ is called as isometry if	
 c. Half-open d. Half Closed 23. A function f: X ₁ → X ₂ is called as isometry if	
d. Half Closed 23. A function $f: X_1 \to X_2$ is called as isometry if	1
23. A function $f: X_1 \to X_2$ is called as isometry if	
	- D
$ a. d_1(x,y) \neq d_2(f(x), f(y)) \forall x, y \in X_1$	B
b. $d_1(x, y) = d_2(f(x), f(y)) \forall x, y \in X_1$	
c. $d_1(x, y) < d_2(f(x), f(y)) \forall x, y \in X_1$	
d. $d_1(x,y) > d_2(f(x), f(y)) \forall x, y \in X_1$	
24. A subset A of X is said to be dense in X if $\bar{A} =$	D
a. A	
$\begin{vmatrix} a & A \\ b & A^C \end{vmatrix}$	
$c. \ \overline{X}$	
d. X 25. A mapping $T: X \to X$ is a contradiction on X it there exists a real number α ,	+
11 0	A
independent of $x, y \in X$ with $0 \le \alpha < 1$.	
a. $d(Tx, Ty) \le \alpha d(x, y)$	
b. $d(Tx, Ty) > \alpha d(x, y)$	
c. $d(Tx, Ty) = \alpha d(x, y)$	
$d. \ d(Tx, Ty) < \alpha d(x, y)$	
26. If $T: X \to X$ is defined as $Tx = x^2$, where $X = \left[0, \frac{1}{3}\right]$ then T is	D
a. Not Continuous on $\left[0,\frac{1}{3}\right]$	
r 43	
b. A contraction on $\left 0,\frac{1}{3}\right $	
c. Continuous $\left[0, \frac{1}{3}\right]$	
d. Both b and c	
27. If A is totally bounded subset of a metric space, (M, ρ) then \bar{A} is	B
a. Not totally bounded	
b. Totally bounded	
c. Not bounded	
d. None of These	
28. If A is an infinite set in a discrete metric space, then X with respect to discrete	B
metric space.	
a. Bounded and totally bounded	
b. Bounded but not totally bounded	
c. Unbounded and totally bounded	
d. None of these	
29. The metric space [0, 1] with absolute value metric space is	D
a. Not bounded	
b. Totally bounded	
c. Complete	
d. Both b and c	
30. If the metric space (M, ρ) is both totally bounded and complete, then it is a. Connected	C

	b. Discrete	
	c. Compact	
	d. Not Compact	
31.	The continuous image of a compact metric space is	B
	a. Not compact	
	b. Compact	
	c. Disconnected	
22	d. None of these	C
32.	The function $f:(0,1) \to \mathbb{R}$ defined by $f(x) = \frac{1}{x}$ is	\mathbf{C}
	a. Both continuous and Uniformly continuous	
	b. Uniformly continuous but not continuous	
	c. Continuous but not Uniformly continuous	
	d. Neither continuous nor Uniformly continuous	
33.	If A_1 and A_2 are connected subsets of a metric space X then $A_1 \cup A_2$ is also connected if	B
	a. $A_1 \cap A_2 = \phi$	
	b. $A_1 \cap A_2 \neq \phi$	
	$c. A_1 \cap A_2 = X$	
	d. None of These	
34.	The series $A = \{x \in \mathbb{R} : x > 0\}$ and $B = \{x \in \mathbb{R} : x < 0\}$ are set.	B
	a. Connected	
	b. Separated	
	c. Not connected	
	d. None of These	-
35.	If A and B are subset of M and $A \subset B$ then	C
	a. $\bar{A} = \bar{B}$	
	b. $\bar{A} \supset \bar{B}$	
	c. $\bar{A} \subset \bar{B}$	
	d. None of These	
36.	If A and B are subset of M then choose correct	A
	a. $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$	
	b. $\underline{\overline{A \cap B}} \supset \underline{A} \cap \underline{B}$	
	c. $\overline{A \cap B} = \overline{A} \cap \overline{B}$	
	d. None of These	
37.	In any metric space every subset of \mathbb{R} is totally bounded.	C
	a. Bounded below	
	b. Bounded above	
	c. Bounded	
•	d. Unbounded	_
38.	On metric space every continuous function is uniformly continuous.	C
	a. Not Complete	
	b. Not Compact	
	c. Compact	
20	d. Not totally bounded	D
39.	If B is a countable subset of an uncountable set A then $(A - B)$ is	В
	a. Countable	
	b. Uncountable	
	c. Denumerable	
40	d. None of These	D
40.	Which of the following set is not compact?	D
	a. The set of real number	
	b. Set of integers	
	c. $(0,1)$	
	d. All of the above	

41.	Which of the following is a countable set?	В
	a. Set of real numbers	
	b. Set of rational numbers	
	c. Set of irrational numbers	
- 10	d. None of these	
42.	In Metric space (M, ρ) , $\rho(x, y) \dots \rho(x, z) + \rho(z, y)$, $\forall x, y \in M$	C
	a. >	
	b. =	
	c. <	
	d. ≠	
43.	If A_1, A_2, \dots, A_n are denumerable sets, then $\bigcup_{n=1}^{\infty} A_n$ is	D
	a. Finite Set	
	b. Non-Countable set	
	c. Non-Denumerable	
	d. Denumerable	
44.	In Discrete metric space $(X, d), d(x, y) = 1$, if	С
	a. $x < y$	
	b. $x > y$	
	c. $x \neq y$	
	d. x = y	
45.	The Set $\mathbb{N} \times \mathbb{N}$ is	В
	a. Finite	
	b. Denumerable	
	c. Non-Denumerable	
	d. None of These	
46.	In a metric space (M, ρ) , $\rho(x, y) = 0$ if and only if	A
10.	a. $x = y$	1.
	b. $x \neq y$	
	$\begin{array}{c c} c. & x \neq y \\ c. & x < y \end{array}$	
	$\begin{array}{ccc} c. & x < y \\ d. & x > y \end{array}$	
47.	If A is denumerable set, then A is equivalent to the set of	В
47.	a. Integers	1
	b. Natural Numbers	
	c. Real Numbers	
	d. Rational Numbers	
48.		C
40.	If (X, d) is a metric space and $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$, $\forall x, y \in X$. Then (X, d_1) is	
	metric space	
	a. Unbounded	
	b. Discrete	
	c. Bounded	
	d. Pseudo	
49.	A metric space (\mathbb{R}, ρ) where $\rho(x, y) = x - y , \ \forall x, y \in \mathbb{R}$ is called as	В
	a. Discrete metric space	
	b. Usual Metric Space	
	c. Pseudo metric space	
	d. All of These	
50.	The subset $[0,1]$ of \mathbb{R} is	С
20.	a. Countable	
	b. Finite	
	o. Imite	
	c. Uncountable	
	c. Uncountable d. Denumerable	
51.	 c. Uncountable d. Denumerable Let (M, ρ) be a metric space, then finite union of closed sets in (M, ρ) is 	В

	b. Closed set	
	c. Half-closed set	
	d. Half-open set	
52.	A metric $d: \mathbb{R} \times \mathbb{R} \to [0, \infty)$ defined as $d(x, y) = x^2 - y^2 $, $\forall x, y \in \mathbb{R}$ is on \mathbb{R} .	В
	a. Metric	
	b. Pseudo Metric	
	c. Not Countable	
	d. None of These	
53.	If A and B are two countable sets, then $A \times B$ is	В
	a. Uncountable	
	b. Countable	
	c. Not Countable	
	d. None of These	
54.	Let (M, ρ) be a metric space and $x_0 \in M$. The set $\{x \in M : \rho(x, x_0) < r\}$ is called	D
	a. Open Set	
	b. Closed Set	
	c. Closed Sphere	
	d. Open Sphere	
55.	If A is a closed set in a metric space, (M, ρ) , then $(M - A)$ is	В
	a. Closed Set	
	b. Open Set	
	c. Both a and b	
	d. Half-closed set	
56.	A set $\{x\}$ in the usual metric space (\mathbb{R}, ρ) is	B
	a. Half-open	
	b. Closed	
	c. Half-closed	
	d. Open Set	
57.	(a, b) in the usual metric space is	B
	a. Open set	
	b. Closed set	
	c. Semi-open set	
50	d. None of These	
58.	If A and B are closed subsets of \mathbb{R} , then $A \times B$ is	C
	a. Open in \mathbb{R}^2	
	b. Open in R	
	c. Closed in \mathbb{R}^2	
	d. Closed in R	