QN	S.Y.B.SC.(Mathematics) Subject :MTH-302 (A) Algebra Question Bank	Ans
1)	Which of the following operations is not binary in \mathbb{Z} ? (A) addition (B) multiplication (C) subtraction (D) division	D
2)	Let G be a non-empty set. A binary operation $*$ on G is said to be if $a *(b * c)=(a * b) * c$ for all $a, b, c \in G$. (A) associative (B) closure (C) commutative (D) abelian	A
$3)$	What is the identity element in the group $(\mathbb{Z},+)$? (A) 0 (B) 1 (C) -1 (D) 2	A
4)	Consider the group $\left(\mathbb{Q}^{+}, *\right)$ where $a * b=\frac{a b}{3}$ for all $a, b \in \mathbb{Q}^{+}$. What is the identity element in \mathbb{Q}^{+}? (A) 0 (B) 1 (C) 2 (D) 3	D
5)	Which of the following is not a group? (A) $(\mathbb{Z},+)$ (B) $(\mathbb{N},+)$ (C) $G=\{1,-1, i,-i\}$ under usual multiplication (D) $G=\mathbb{R}-\{1\}$ under operation $a * b=a+b-a b$ for all $a, b \in G$	B
6)	Which of the following is incorrect? (A)Identity element in a group is unique. (B) Inverse of every element in a group is unique. (C) Every group is abelian. (D) None of the above.	C
7)	In a group $G=\{1,-1, i,-i\}$ under usual multiplication, $i^{-1}=\ldots \ldots$. (A) 1 (B) -1 (C) i (D) $-i$	D

8)	In the group $\left(\mathbb{Z}_{8}^{\prime}, \times_{8}\right), \overline{3}^{-1}=\ldots \ldots$ (A) $\overline{1}$ (B) $\overline{3}$ (C) $\overline{5}$ (D) $\overline{7}$	B
9)	In a group G, for $a \in G,\left(a^{-1}\right)^{-1}=\ldots \ldots$ (A) a (B) a^{-1} (C) e, identity in G (D) 1	A
10)	Which of the following is an abelian group? (A) $G=\mathbb{R}-\{1\}$ under operation $a * b=a+b-a b$ for all $a, b \in G$ (B) $G=\{1,-1, i,-i, j,-j, k,-k\}$ the group of quaternions under usual multiplication (C) $G=\{A: A$ is a non-singular matrix of order n over $\mathbb{R}\}$ under usual matrix multiplication (D) $G=\{(a, b): a, b \in \mathbb{R}, a \neq 0\}$ under operation $(a, b) \odot(c, d)=(a c, b c+d)$ for all $(a, b),(c, d) \in G$	A
11)	Which of the following is a non-abelian group? (A) $(2 \mathbb{Z},+)$ (B) $G=\{1,-1, i,-i\}$ under usual multiplication (C) $G=\mathbb{Q}-\{-1\}$ under operation $a * b=a+b+a b$ for all $a, b \in G$ (D) $G=\{(a, b): a, b \in \mathbb{R}, a \neq 0\}$ under operation $(a, b) \odot(c, d)=(a c, b c+d)$ for $\operatorname{all}(a, b),(c, d) \in G$	D
12)	Which of the following is a non-abelian group? $(\mathrm{A})(\mathbb{R},+)$ (B) $\left(\mathbb{Z}_{6},+_{6}\right)$ (C) $\left(\mathbb{Z}_{8}^{\prime}, \times_{8}\right)$ (D) $G=\{A: A$ is a non-singular matrix of order n over $\mathbb{R}\}$ under usual matrix multiplication	D

13)	Which of the following group is finite? (A) $(\mathbb{Z},+)$ (B) $G=\{1,-1, i,-i\}$ under usual multiplication (C) $G=\mathbb{Q}-\{-1\}$ under operation $a * b=a+b+a b$ for all $a, b \in G$ (D) $\left(\mathbb{Q}^{+}, *\right)$ under the operation $a * b=\frac{a b}{2}$ for all $a, b \in \mathbb{Q}^{+}$	B
14)	Which of the following group is infinite? (A) $G=\{1,-1, i,-i\}$ under usual multiplication (B) $\left(\mathbb{Z}_{6},+_{6}\right)$ (C) $\left(\mathbb{Z}_{8}^{\prime}, \times_{8}\right)$ (D) $\left(\mathbb{Q}^{+}, *\right)$ under the operation $a * b=\frac{a b}{2}$ for all $a, b \in \mathbb{Q}^{+}$	D
15)	The number of element present in a finite group G is (A) Order of group (B) Order of element (C) Index of group (D) None of the above	A
16)	The order of the group $\left(\mathbb{Z}_{6},+_{6}\right)$ is (A) 2 (B) 3 (C) 5 (D) 6	D
17)	In the group $(\mathbb{Z},+),(2)^{4}=\ldots$. (A) 0 (B) 2 (C) 8 (D) 16	C
18)	In the group $\left(\mathbb{Z}_{6},+_{6}\right),(\overline{3})^{-4}=\ldots \ldots$ (A) $\overline{0}$ (B) $\overline{2}$ (C) $\overline{3}$ (D) $\overline{1}$	A
19)	In the group $\left(\mathbb{Z}_{8}^{\prime}, \times_{8}\right),(\overline{5})^{4}=\ldots \ldots$ (A) $\overline{1}$ (B) $\overline{3}$ (C) $\overline{5}$ (D) $\overline{7}$	A

20)	In the group $G=\{1,-1, i,-i\}$ under usual multiplication, order of $i=\ldots \ldots$ (A) 1 (B) 2 (C) 3 (D) 4	D
21)	The number of element in the group $\left(\mathbb{Z}_{8}^{\prime}, \times_{8}\right)$ of order 4 are (A) 2 (B) 3 (C) 4 (D) 0	B
22)	Let G be a group and $a, b, c \in G$. Then $(a b c)^{-1}=$ \qquad (A) $a^{-1} b^{-1} c^{-1}$ (B) $c^{-1} a^{-1} b^{-1}$ (C) $c^{-1} b^{-1} a^{-1}$ (D) $a^{-1} c^{-1} b^{1}$	C
23)	Let G be a group and $a, b \in G$ such that $a b=b a$. Which of the following is incorrect? (A) $a^{k} b=b a^{k}$ for all $k \in \mathbb{N}$ (B) $(a b)^{n}=a^{n} b^{n}$ for all $n \in \mathbb{N}$ (C) $(a b)^{-1}=a^{-1} b^{-1}$ (D) None of the above	D
24)	A group G is called as if the number of element in G is finite? (A) abelian (B) finite (C) infinite (D) non-abelian	B
25)	An Abelian group is also known as group. (A) finite (B) infinite (C) commutative (D) ordered	C
26)	In any group $G, o\left(a^{-1}\right)=$ \qquad (A) $o(a)$ (B) $o(G)$ (C) $\frac{1}{o(a)}$ (D) $\frac{1}{o(G)}$	A

27)	In the group $(\mathbb{Z},+), o(2)=\ldots \ldots$ (A) 0 (B) 1 (C) 2 (D) infinite	D
28)	How many elements in the group $(\mathbb{Z},+)$ has finite order? (A) 1 (B) 2 (C) 3 (D) infinite	A
29)	If G be a group and $a \in G, m, n \in \mathbb{N}$, then $a^{m} a^{n}=$ \qquad (A) $a^{m n}$ (B) a^{m+n} (C) $a^{\frac{m}{n}}$ (D) $a^{(m, n)}$	B
30)	Order of the identity element in any group is (A) 0 (B) 1 (C) 2 (D) $o(G)$	B
31)	Let G be a group and $a, b \in G, m \in \mathbb{N}$. Then $\left(b^{-1} a b\right)^{m}=\ldots \ldots$. (A) $b^{-1} a^{m} b$ (B) $b^{-m} a b^{m}$ (C) $b^{-1} a b$ (D) e	A
32)	Which of the following is a improper subgroup of a group G ? $\text { (A) }\{e\}$ (B) G (C) Every subgroup of G (D) None of the above	B
33)	Which of the following is a trivial subgroup of a group G ? $\text { (A) }\{e\}$ (B) G (C) every subgroup of G (D) None of the above	A

34)	A subgroup H of a group G is called \qquad if $H \neq G$. (A) trivial (B) improper (C) proper (D) None of the above	C
35)	Which of the following is a subgroup of a group $G=\{1,-1, i,-i\}$ under usual multiplication? (A) $\{1, i\}$ (B) $\{-1,-i\}$ (C) $\{i,-i\}$ (D) $\{1,-1\}$	D
36)	Which of the following is a not subgroup of the group $(\mathbb{Z},+)$? (A) The set of all even integers (B) $n \mathbb{Z}$ for any $n \in \mathbb{N}$ (C) The set of all odd integers (D) $\{0\}$	C
37)	Consider the statements: I: Union of two subgroup in a group G is a subgroup of G. II: Intersection of two subgroup in a group G is a subgroup of G (A) Only statement I is correct (B) Only statement II is correct (C) Both the statements are correct (D) None of the above	B

38)	Let H, K be subgroup of a group G. Then $H \cup K$ is a subgroup of G if and only if $(\mathrm{A}) H \subseteq K$ (B) $K \subseteq H$ (C) $H \subseteq K$ or $K \subseteq H$ (D) $H \subseteq K$ and $K \subseteq H$	C
39)	The necessary and sufficient condition for a non-empty subset H of a group G to be a subgroup is that (A) $a, b \in H$ implies $a b^{-1} \in H$ (B) $a, b \in H$ implies $a+b \in H$ (C) $a \in H$ implies $a^{-1} \in H$ (D) $a, b \in H$ implies $a b \in H$	A
40)	For a dihedral group $D_{6}, o\left(D_{6}\right)=\ldots \ldots$. (A) 1 (B) 2 (C) 3 (D) 6	D
41)	Consider the following statements: I: Every cyclic group is abelian. II: Every abelian group is cyclic. (A) Only statement I is correct (B) Only statement II is correct (C) Both the statements are correct (D) None of the above	A
42)	The number of generators for the group $G=\{1,-1, i,-i\}$ under usual multiplication are (A) 1 (B) 2 (C) 3 (D) 0	B

43)	Which of the following group is not cyclic? (A) $G=\{1,-1, i,-i\}$ under usual multiplication (B) $\left(\mathbb{Z}_{6},+_{6}\right)$ (C) $\left(\mathbb{Z}_{8}^{\prime}, \times_{8}\right)$ (D) $(\mathbb{Z},+)$	C
44)	Which of the following group is abelian but not cyclic? (A) $G=\{1,-1, i,-i\}$ under usual multiplication (B) $\left(\mathbb{Z}_{6},+_{6}\right)$ (C) $(\mathbb{Q},+)$ (D) $(\mathbb{Z},+)$	C
45)	The number of proper subgroup of the group $(\mathbb{Z},+)$ are (A) 1 (B) 2 (C) 5 (D) infinite	D
46)	The number if proper subgroup of the group $\left(\mathbb{Z}_{12},+_{12}\right)$ are (A) 1 (B) 2 (C) 5 (D) 6	C
47)	A cyclic group of order 10 has number of subgroups. (A) 1 (B) 2 (C) 4 (D) 10	C
48)	Let H be a subgroup of a group G and $a \in G$. Then the set $\{a h: h \in H\}$ is known as (A) left coset of H by a (B) right coset of H by a (C) coset (D) sub-coset	A

49)	Let H be a subgroup of a group G and $a, b \in G$. Which of the following is incorrect? (A) $a H=H$ if $\in H$. (B) $H a$ and $H b$ are either equal or disjoint. (C) $H a=H b$ implies $a b^{-1} \in H$. (D) None of the above.	D
50)	The number of distinct left cosets of a subgroup $H=\{1,-1\}$ in the group $G=\{1,-1, i,-i\}$ under usual multiplication are (A) 1 (B) 2 (C) 3 (D) 4	B
51)	If H is a subgroup of a finite group G, then $o(H) \mid o(G)$. This is the statement of \qquad theorem. (A)Euler's (B) Fermat's (C) Lagrange's (D) Cauchy's	C
52)	If $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ such that $(a, n)=1$, then $a^{\emptyset(n)}=1(\bmod n)$. This is the statement of \qquad theorem. (A) Euler's (B) Fermat's (C) Lagrange's (D) Cauchy's (B)	A
53)	If p is a prime number and $a \in \mathbb{Z}$ such that $p \nmid a$ then $a^{p-1}=1(\bmod p)$. This is the statement of Theorem. (A)Euler's (B) Fermat's (C) Lagrange's (D) Cauchy's	B
54)	Let G be a finite group and $a \in G$. Then $a^{o(G)}=\ldots \ldots$. (A) e (B) a (C) a^{2} (D) $o(G)$	A
55)	Let $\emptyset(n)$ be an Euler's totient function. Then $\emptyset(10)=$ \qquad (A) 1 (B) 2 (C) 4 (D) 9	C
56)	Let $\emptyset(n)$ be an Euler's totient function. Then $\emptyset(17)=\ldots \ldots .$. (A) 1 (B) 2 (C) 16 (D) 7	C
57)	The remainder obtained when 3^{54} divided by 11 is \qquad (A) 1 (B) 2 (C) 3 (D) 4	D

58)	The remainder obtained when 15^{27} divided by 8 is $\ldots \ldots$. (A) 1 (B) 2 (C) 6 (D) 7	D
59)	The remainder obtained when $5^{10}-3^{10}$ divided by 11 is $\ldots \ldots$ (A) 0 (B) 1 (C) 3 (D) 5	A
60)	The number of cyclic subgroups of a group of order $41=\ldots \ldots$ (A) 0 (B) 1 (C) 2 (D) 41	C
61)	A function $f:(G, *) \rightarrow\left(G_{1}, *^{\prime}\right)$ is called a group homomorphism if $\ldots \ldots$ (A) $f(a * b)=f(a) * f(b)$ for all $a, b \in G$ (B) $f(a * b)=f(a) *^{\prime} f(b)$ for all $a, b \in G$ (C) $f\left(a *^{\prime} b\right)=f(a) *^{\prime} f(b)$ for all $a, b \in G$ (D) $f\left(a *^{\prime} b\right)=f(a)+f(b)$ for all $a, b \in G$	B
62)	If $f:(G, *) \rightarrow\left(G_{1}, *^{\prime}\right)$ is a group homomorphism and e, e_{1} are identity elements in G and G_{1} respectively, then $f(e)=$ \qquad (A) e (B) G (C) e_{1} (D) 0	C
63)	If $f:(G, *) \rightarrow\left(G_{1}, *^{\prime}\right)$ is a group homomorphism and $a \in G$, then $f\left(a^{n}\right)=$ \qquad For all $n \in \mathbb{Z}$. (A) e (B) $f(a)^{n}$ (C) a^{n} (D) 0	B
64)	If $f:(G, *) \rightarrow\left(G_{1}, *^{\prime}\right)$ is a group homomorphism, then the set $\left\{x \in G: f(x)=e_{1}\right.$, identity in $\left.G_{1}\right\}$ is (A) homomorphic image of G (B) kernel of f (C) $f(G)$ (D) $I m f$	B
65)	Let $G=\{1,-1, i,-i\}$ be the group under usual multiplication. If a function $f:(\mathbb{Z},+) \rightarrow(G, \times)$ defined by $f(n)=i^{n}$ for all $n \in \mathbb{Z}$ is a group homomorphism, then kerf $=$ (A) \mathbb{Z} (B) $\{0\}$ (C) $4 \mathbb{Z}$ (D) \varnothing	C
66)	If a function $f:(\mathbb{R},+) \rightarrow(\mathbb{R},+)$ defined by $f(x)=\frac{x}{2}$ for all $x \in \mathbb{R}$ is a group homomorphism, then $\operatorname{kerf}=$ \qquad (A) \mathbb{R} (B) $\{0\}$ (C) \mathbb{Z} (D) \varnothing	B
67)	A function $g:(\mathbb{R},+) \rightarrow(\mathbb{R},+)$ defined by $g(x)=x+1$ for all $x \in \mathbb{R}$, is \qquad (A) one-one group homomorphism (B) onto group homomorphism (C) not a group homomorphism (D) an isomorphism	C

68)	For $n \in \mathbb{N},(n \mathbb{Z},+) \cong$ \qquad (A) $(\mathbb{R},+)$ (B) $(\mathbb{Q},+)$ (C) $(\mathbb{Z},+)$ (D) $\left(\mathbb{Z}_{n},+_{n}\right)$	C
69)	Every finite cyclic group G of order n is isomorphic to (A) $(\mathbb{R},+)$ (B) $(\mathbb{Q},+)$ (C) $(\mathbb{Z},+)$ (D) $\left(\mathbb{Z}_{n},+_{n}\right)$	D
70)	Every infinite cyclic group G is isomorphic to (A) $(\mathbb{R},+)$ (B) $(\mathbb{Q},+)$ (C) $(\mathbb{Z},+)$ (D) $\left(\mathbb{Z}_{n},+_{n}\right)$	C
71)	Consider the following statements: I: Homomorphic image of an abelian group is abelian. II: An isomorphic $f: G \rightarrow G$ is known as automorphism. Which of the following is true? (A) Only statement I is correct (B) Only statement II is correct (C) Both the statements are correct (D) None of the above	C
72)	If G is a cyclic group with generator a, then the homomorphic image, $f(G)=\ldots \ldots$. (A) $<a>$ (B) $<f(a)>$ (C) $\{a\}$ (D) $\{e\}$	B

73)	Which of the following statements is false? $(\mathrm{A})(\mathbb{Z},+) \cong(2 \mathbb{Z},+)$ (B) $G \cong\left(\mathbb{Z}_{4},+_{4}\right)$ where $G=\{1,-1, i,-i\}$ is a group under usual multiplication (C) $(\mathbb{Q},+) \cong(\mathbb{Q}-\{0\}, \times)$ (D) None of the above	C
74)	Which of the following statements is false? (A) $(\mathbb{Z},+) \cong(3 \mathbb{Z},+)$ (B) If $G=\{1,-1, i,-i\}$ is a group under usual multiplication, then $G \cong\left(\mathbb{Z}_{4}^{\prime}, \times_{8}\right)$ (C) Any two finite cyclic groups of same order are isomorphic. (C) None of the above	B
75)	If $f: G \rightarrow G_{1}$ is a group isomorphism and $a \in G$, then (A) $o(a)<o(f(a))$ (B) $o(a)>o(f(a))$ (C) $o(a)=o(f(a))$ (D) None of the above	C
76)	Consider $(\mathbb{R},+)$, the group of reals under usual addition and $\left(\mathbb{R}^{+}, \cdot\right)$, the group of positive reals under usual multiplication. Then the $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$defined by $\ldots \ldots$. Is an isomorphism. (A) $f(x)=2^{x}$ for all $x \in \mathbb{R}$ (B) $f(x)=2 x$ for all $x \in \mathbb{R}$ (C) $f(x)=x+2$ for all $x \in \mathbb{R}$ (D) $f(x)=x$ for all $x \in \mathbb{R}$	A

77)	Let $f: G \rightarrow G^{\prime}$ be a group homomorphism. Consider the following statement: I: G is an abelian group II: $f(G)$ is an abelian group. Which of the following is correct? (A)I implies II only (B) II implies I only (C) I if and only if II (D) Neither I implies II nor II implies I	A
78)	Let $f: G \rightarrow G^{\prime}$ be a group homomorphism. Consider the following statement: I: G is a cyclic group II: $f(G)$ is a cyclic group. Which of the following is correct? (A)I implies II only (B) II implies I only (C) I if and only if II (D) Neither I implies II nor II implies I	A
79)	Let $f: G \rightarrow G^{\prime}$ be a group homomorphism. Consider the following statement: I: G is a finite group II: $f(G)$ is a finite group. Which of the following is correct? (A)I implies II only (B) II implies I only (C) I if and only if II (D) Neither I implies II nor II implies I	A
80)	The number of group homomorphisms from the group $(\mathbb{Z},+)$ onto itself $=\ldots .$. (A) 0 (B) 1 (C) 2 (D) infinite	D

81)	A ring $(R,+, \cdot)$ is said to be commutative if (A) $a+b=b+a$ for all $a, b \in R$ (B) $a \cdot b=b \cdot a$ for all $a, b \in R$ (C) $a \cdot b=b \cdot a$ for some $a, b \in R$ (D) $a \cdot b=1$ for all $a, b \in R$	B
82)	Which of the following is not a ring under usual addition and multiplication? (A) \mathbb{R} (B) $\{0\}$ (C) The set of all odd integers (D) $\left\{\frac{p}{q} \in \mathbb{Q}: p, q \in \mathbb{Z}\right.$ and q is odd integer $\}$	C
83)	Which of the following rings is commutative? (A) $(\mathbb{R},+, \cdot)$ (B) $\left\{\left[\begin{array}{cc}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right]: a, b, c, d \in \mathbb{R}\right\}$ under usual addition and multiplication of matrices (C) The set of 2×2 matrices over \mathbb{Z} under usual addition and multiplication of matrices (D) None of the above	A
84)	Which of the following rings is without identity? (A) $(2 \mathbb{Z},+, \cdot)$ (B) $\left\{\left[\begin{array}{lll}a & a & a \\ a & a & a \\ a & a & a\end{array}\right]: a \in \mathbb{R}\right\}$ under usual addition and multiplication of matrices (C) $\left\{\frac{p}{q} \in \mathbb{Q}: p, q \in \mathbb{Z}\right.$ and q is odd integer $\}$ under usual addition and multiplication (D) None of the above	A

85)	Which of the following rings is non-commutative? (A) $(2 \mathbb{Z},+, \cdot)$ (B) $\left\{\left[\begin{array}{lll}a & a & a \\ a & a & a \\ a & a & a\end{array}\right]: a \in \mathbb{R}\right\}$ under usual addition and multiplication of matrices (C) The set of 2×2 matrices over \mathbb{Z} under usual addition and multiplication of matrices (D) None of the above	C
86)	Which of the following rings is non-commutative? $(\mathrm{A})(\mathbb{Q},+, \cdot)$ (B) $\left\{\left[\begin{array}{lll}a & a & a \\ a & a & a \\ a & a & a\end{array}\right]: a \in \mathbb{R}\right\}$ under usual addition and multiplication of matrices (C) $\left\{\left[\begin{array}{cc}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right]: a, b, c, d \in \mathbb{R}\right\}$ under usual addition and multiplication of matrices (D) None of the above	C
87)	The identity (unity) element in the ring $\left\{\left[\begin{array}{lll}a & a & a \\ a & a & a \\ a & a & a\end{array}\right]: a \in \mathbb{R}\right\}$ under usual addition and multiplication of matrices is \qquad (A) $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ (B) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ (C) $\left[\begin{array}{lll}\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\end{array}\right]$ (D) 1	C
88)	The identity (unity) element in the ring $(\mathbb{Z}, \oplus, \odot)$ is $\ldots \ldots$, where $a \oplus b=a+b-1$ and $a \odot b=a+b-a b$ for all $a, b \in \mathbb{Z}$. (A) 0 (B) 1 (C) 2 (D) 3	A

89)	Let $(R,+, \cdot)$ be a ring with identity 1 . Which of the following statement is false? (A) $a \cdot 0=0$ (B) $(-a) b=a(-b)$ (C) $c(a-b)=a c-b c$ (D) $(-1)(-1)=1$	C
90)	The number of units in the ring $\left(\mathbb{Z}_{6},+_{6}, \times_{6}\right)$ are (A) 2 (B) 3 (C) 5 (D) 0	A
91)	The system $\left(\mathbb{Z}_{6},+_{6}, \times_{6}\right)$ is \qquad (A) not a ring (B) ring but not an integral domain (C) an integral domain but not a field (D) field	B
92)	In the ring $\left(\mathbb{Z}_{7},+_{7}, \times_{7}\right), \overline{3} \times_{7}(-\overline{4})=\ldots \ldots$. (A) $\overline{0}$ (B) $\overline{2}$ (C) $\overline{1}$ (D) $-\overline{2}$	B
93)	The multiplicative inverse of $1+i$ in the ring $\mathbb{Z}[i]$ is (A) 1 (B) i (C) $1-i$ (D) None of the above	D
94)	The number of zero divisors in the ring $\left(\mathbb{Z}_{6},+_{6}, X_{6}\right)$ are (A) 2 (B) 3 (C) 5 (D) 0	B
95)	A commutative ring R without zero divisors is called as (A) an integral domain (B) a field (C) a division ring (D) a Boolean ring	A
96)	For $n>1$, a ring $\left(\mathbb{Z}_{n},+_{n}, \times_{n}\right)$ is an integral domain if and only if (A) n is odd (B) n is even (C) n is prime (D) n is composite number	C

97)	Which of the following is not a field? (A) $(\mathbb{C},+, \cdot)$ (B) $(\mathbb{R},+, \cdot)$ (C) $(\mathbb{Q},+, \cdot)$	(D) $(2 \mathbb{Z},+, \cdot)$	D
98)	Which of the following is incorrect? (A)Every field is an integral domain. (B) Every integral domain is a field. (C) Every finite integral domain is a field. (D) Every field is a division ring.		B
99)	Which of the following rings is a Boolean ring? (A) $(\mathbb{C},+, \cdot)$ (B) $(\mathbb{R},+, \cdot)$ (C) $(\mathbb{Z},+, \cdot)$	(D) $\left(\mathbb{Z}_{2},+_{2}, x_{2}\right)$	D
100)	If R is a Boolean ring, then $a^{3}=$ \qquad for all $a \in R$ (A) 0 (B) 1 (C) a (D) a^{-1}		C

