QN	S.Y.B.SC.(Mathematics) Subject :MTH-302 (A) Algebra Question Bank	Ans
1)	Which of the following operations is not binary in \mathbb{Z} ?	D
·	(A) addition (B) multiplication (C) subtraction (D) division	
2)	Let G be a non-empty set. A binary operation $*$ on G is said to be if $a*(b*c)=(a*b)*c$ for all $a,b,c\in G$.	A
	(A) associative (B) closure (C) commutative (D) abelian	
3)	What is the identity element in the group $(\mathbb{Z}, +)$?	A
	(A)0 (B) 1 (C) -1 (D) 2	
4)	Consider the group (\mathbb{Q}^+ ,*) where $a*b = \frac{ab}{3}$ for all $a,b \in \mathbb{Q}^+$. What is the identity element in \mathbb{Q}^+ ?	D
	(A)0 (B) 1 (C) 2 (D) 3	
5)	Which of the following is not a group?	В
	$(A)(\mathbb{Z},+)$	
	(B) (N,+)	
	(C) $G = \{1, -1, i, -i\}$ under usual multiplication	
	(D) $G = \mathbb{R} - \{1\}$ under operation $a * b = a + b - ab$ for all $a, b \in G$	
6)	Which of the following is incorrect?	С
	(A) Identity element in a group is unique.	
	(B) Inverse of every element in a group is unique.	
	(C) Every group is abelian.	
	(D) None of the above.	
7)	In a group $G = \{1, -1, i, -i\}$ under usual multiplication, $i^{-1} = \dots$	D
	(A) 1 (B) -1 (C) i (D) $-i$	

8)	In the group (\mathbb{Z}'_8 , \times_8), $\overline{3}^{-1} = \dots$	В
	(A) $\overline{1}$ (B) $\overline{3}$ (C) $\overline{5}$ (D) $\overline{7}$	
9)	In a group G , for $a \in G$, $(a^{-1})^{-1} = \dots$	A
	(A) a (B) a^{-1} (C) e , identity in G (D) 1	
10)	Which of the following is an abelian group?	A
	(A) $G = \mathbb{R} - \{1\}$ under operation $a * b = a + b - ab$ for all $a, b \in G$	
	(B) $G = \{1, -1, i, -i, j, -j, k, -k\}$ the group of quaternions under usual multiplication	
	(C) $G = \{A: A \text{ is a non-singular matrix of order } n \text{ over } \mathbb{R} \}$ under usual matrix multiplication	
	(D) $G = \{(a, b): a, b \in \mathbb{R}, a \neq 0\}$ under operation $(a, b) \odot (c, d) = (ac, bc + d)$ for all $(a, b), (c, d) \in G$	
11)	Which of the following is a non-abelian group?	D
	$(A)(2\mathbb{Z},+)$	
	(B) $G = \{1, -1, i, -i\}$ under usual multiplication	
	(C) $G = \mathbb{Q} - \{-1\}$ under operation $a * b = a + b + ab$ for all $a, b \in G$	
	(D) $G = \{(a,b): a,b \in \mathbb{R}, a \neq 0\}$ under operation $(a,b) \odot (c,d) = (ac,bc+d)$ for all $(a,b),(c,d) \in G$	
12)	Which of the following is a non-abelian group?	D
	$(A)(\mathbb{R},+)$	
	(B) $(\mathbb{Z}_6, +_6)$	
	$(C)(\mathbb{Z}'_8,\times_8)$	
	(D) $G = \{A: A \text{ is a non-singular matrix of order } n \text{ over } \mathbb{R} \}$ under usual matrix multiplication	
		1

13)	Which of the following group is finite?	В
	$(A)(\mathbb{Z},+)$	
	(B) $G = \{1, -1, i, -i\}$ under usual multiplication	
	(C) $G = \mathbb{Q} - \{-1\}$ under operation $a * b = a + b + ab$ for all $a, b \in G$	
	(D) (\mathbb{Q}^+ , *) under the operation $a * b = \frac{ab}{2}$ for all $a, b \in \mathbb{Q}^+$	
14)	Which of the following group is infinite?	D
	(A) $G = \{1, -1, i, -i\}$ under usual multiplication	
	$(B) (\mathbb{Z}_6, +_6)$	
	$(C)(\mathbb{Z}'_8,\times_8)$	
	(D) (\mathbb{Q}^+ , *) under the operation $a * b = \frac{ab}{2}$ for all $a, b \in \mathbb{Q}^+$	
15)	The number of element present in a finite group G is	A
	(A) Order of group	
	(B) Order of element	
	(C) Index of group	
	(D) None of the above	
16)	The order of the group (\mathbb{Z}_6 , $+_6$) is	D
	(A)2 (B)3 (C)5 (D)6	
17)	In the group $(\mathbb{Z}, +), (2)^4 =$	С
	(A)0 (B) 2 (C) 8 (D) 16	
18)	In the group $(\mathbb{Z}_6, +_6)$, $(\overline{3})^{-4} = \dots$	A
	$(A)\overline{0} \qquad (B)\overline{2} \qquad (C)\overline{3} \qquad (D)\overline{1}$	
19)	In the group $(\mathbb{Z}_8', \times_8), (\overline{5})^4 = \dots$	A
	(A) $\overline{1}$ (B) $\overline{3}$ (C) $\overline{5}$ (D) $\overline{7}$	

20)	In the group $G = \{1, -1, i, -i\}$ under usual multiplication, order of $i = \dots$	D
	(A) 1 (B) 2 (C) 3 (D) 4	
21)	The number of element in the group (\mathbb{Z}_8' , \times_8) of order 4 are	В
	(A)2 (B)3 (C)4 (D)0	
22)	Let G be a group and $a, b, c \in G$. Then $(abc)^{-1} = \dots$	С
	$(A)a^{-1}b^{-1}c^{-1}$	
	(A) $a^{-1}b^{-1}c^{-1}$ (B) $c^{-1}a^{-1}b^{-1}$ (C) $c^{-1}b^{-1}a^{-1}$	
	(C) $c^{-1}b^{-1}a^{-1}$	
	(D) $a^{-1}c^{-1}b^1$	
23)	Let G be a group and $a, b \in G$ such that $ab = ba$. Which of the following is incorrect?	D
	$(A)a^kb = ba^k \text{ for all } k \in \mathbb{N}$	
	(B) $(ab)^n = a^n b^n$ for all $n \in \mathbb{N}$	
	(C) $(ab)^{-1} = a^{-1}b^{-1}$	
	(D) None of the above	
24)	A group G is called as if the number of element in G is finite?	В
	(A) abelian (B) finite (C) infinite (D) non-abelian	
25)	An Abelian group is also known as group.	С
	(A) finite (B) infinite (C) commutative (D) ordered	
26)	In any group G , $o(a^{-1}) = \dots$	A
	(A) o(a)	
	(B) $o(G)$	
	$(C)\frac{1}{\sigma(a)}$	
	$(C)\frac{1}{o(a)}$ $(D)\frac{1}{o(G)}$	
	$(D)\frac{1}{o(G)}$	
		1

27)	In the group $(\mathbb{Z}, +)$, $o(2) = \dots$	D
	(A)0 (B) 1 (C) 2 (D) infinite	
28)	How many elements in the group $(\mathbb{Z}, +)$ has finite order?	A
	(A) 1 (B) 2 (C) 3 (D) infinite	
29)	If G be a group and $a \in G$, $m, n \in \mathbb{N}$, then $a^m a^n = \dots$	В
	(A) a^{mn} (B) a^{m+n} (C) $a^{\frac{m}{n}}$ (D) $a^{(m, n)}$	
30)	Order of the identity element in any group is	В
	(A)0 (B) 1 (C) 2 (D) $o(G)$	
31)	Let G be a group and $a, b \in G$, $m \in \mathbb{N}$. Then $(b^{-1} ab)^m = \dots$	A
	(A) $b^{-1}a^mb$ (B) $b^{-m}ab^m$ (C) $b^{-1}ab$ (D) e	
32)	Which of the following is a improper subgroup of a group G ?	В
	$(A)\{e\}$	
	(B) G	
	(C) Every subgroup of G	
	(D) None of the above	
33)	Which of the following is a trivial subgroup of a group <i>G</i> ?	A
	$(A)\{e\}$	
	(B) G	
	(C) every subgroup of G	
	(D) None of the above	

34)	A subgroup H of a group G is called if $H \neq G$.	C
	(A)trivial	
	(71) (11) (11)	
	(B) improper	
	(0)	
	(C) proper	
	(D) None of the above	
35)	Which of the following is a subgroup of a group $G = \{1, -1, i, -i\}$ under usual	D
	multiplication?	
	(A)(1;)	
	$(A)\{1, i\}$	
	$(B)\{-1,-i\}$	
	$(C)\{i,-i\}$	
	$(D)\{1,-1\}$	
36)	Which of the following is a not subgroup of the group $(\mathbb{Z}, +)$?	С
	(A) The set of all even integers	
	(B) $n\mathbb{Z}$ for any $n \in \mathbb{N}$	
	(C) The set of all odd integers	
	(D) (0)	
37)	(D){0} Consider the statements:	В
37)	Consider the statements.	В
	I: Union of two subgroup in a group G is a subgroup of G .	
	II. Intersection of two subsequent is a suspen C is a subsequent of C	
	II: Intersection of two subgroup in a group G is a subgroup of G	
	(A) Only statement I is correct (B) Only statement II is correct	
	(C) Both the statements are correct (D) None of the above	

38)	Let H, K be subgroup of a group G . Then $H \cup K$ is a subgroup of G if and only if	С
	$(A)H\subseteq K$	
	$(\mathrm{B})K\subseteq H$	
	$(C) H \subseteq K \text{ or } K \subseteq H$	
	$(D)H \subseteq K \ and \ K \subseteq H$	
39)	The necessary and sufficient condition for a non-empty subset H of a group G to be a subgroup is that	A
	$(A)a,b \in H \text{ implies } ab^{-1} \in H$	
	(B) $a, b \in H$ implies $a + b \in H$	
	(C) $a \in H$ implies $a^{-1} \in H$	
	$(D)a, b \in H \text{ implies } ab \in H$	
40)	For a dihedral group D_6 , $o(D_6) = \dots$	D
	(A) 1 (B) 2 (C) 3 (D) 6 Consider the following statements:	
41)	Consider the following statements:	A
	I: Every cyclic group is abelian.	
	II: Every abelian group is cyclic.	
	(A)Only statement I is correct (B) Only statement II is correct	
	(C) Both the statements are correct (D) None of the above	
42)	The number of generators for the group $G = \{1, -1, i, -i\}$ under usual multiplication are	В
	(A) 1 (B) 2 (C) 3 (D) 0	

		
43)	Which of the following group is not cyclic?	С
	$(A)G = \{1, -1, i, -i\}$ under usual multiplication	
	$(B) (\mathbb{Z}_6, +_6)$	
	$(C)(\mathbb{Z}_8',\times_8)$	
	$(D)(\mathbb{Z},+)$	
44)	Which of the following group is abelian but not cyclic?	С
	(A) $G = \{1, -1, i, -i\}$ under usual multiplication	
	$(B) (\mathbb{Z}_6, +_6)$	
	(C)(Q,+)	
	$(D)(\mathbb{Z},+)$	
45)	The number of proper subgroup of the group (\mathbb{Z} , +) are	D
	(A) 1 (B) 2 (C) 5 (D) infinite	
46)	The number if proper subgroup of the group (\mathbb{Z}_{12} , $+_{12}$) are	С
	(A) 1 (B) 2 (C) 5 (D) 6	
47)	A cyclic group of order 10 has number of subgroups.	С
	(A) 1 (B) 2 (C) 4 (D) 10	
48)	Let <i>H</i> be a subgroup of a group <i>G</i> and $a \in G$. Then the set $\{ah: h \in H\}$ is known as	A
	(A) left coset of H by a	
	(B) right coset of H by a	
	(C) coset	
	(D) sub-coset	

$(A) aH = H \text{ if } \in H.$	
(B) Ha and Hb are either equal or disjoint.	
(C) $Ha = Hb$ implies $ab^{-1} \in H$.	
(D) None of the above.	
The number of distinct left cosets of a subgroup $H = \{1, -1\}$ in the group $G = \{1, -1, i, -i\}$ under usual multiplication are	В
(A) 1 (B) 2 (C) 3 (D) 4	
If H is a subgroup of a finite group G , then $o(H) o(G)$. This is the statement of theorem.	С
(A) Euler's (B) Fermat's (C) Lagrange's (D) Cauchy's	
If $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ such that $(a, n) = 1$, then $a^{\emptyset(n)} = 1 \pmod{n}$. This is the statement of theorem.	A
(A) Euler's (B) Fermat's (C) Lagrange's (D) Cauchy's (B)	
If p is a prime number and $a \in \mathbb{Z}$ such that $p \nmid a$ then $a^{p-1} = 1 \pmod{p}$. This is the statement of Theorem.	В
(A) Euler's (B) Fermat's (C) Lagrange's (D) Cauchy's	
Let G be a finite group and $a \in G$. Then $a^{o(G)} = \dots$	A
(A) e (B) a (C) a^2 (D) $o(G)$	
	С
(A) 1 (B) 2 (C) 4 (D) 9	
Let $\emptyset(n)$ be an Euler's totient function. Then $\emptyset(17) = \dots$	С
(A) 1 (B) 2 (C) 16 (D) 7	
The remainder obtained when 3 ⁵⁴ divided by 11 is	D
(A) 1 (B) 2 (C) 3 (D) 4	
	(C) $Ha = Hb$ implies $ab^{-1} \in H$. (D) None of the above. The number of distinct left cosets of a subgroup $H = \{1, -1\}$ in the group $G = \{1, -1, i, -i\}$ under usual multiplication are (A) 1 (B) 2 (C) 3 (D) 4 If H is a subgroup of a finite group G , then $o(H) o(G)$. This is the statement of theorem. (A) Euler's (B) Fermat's (C) Lagrange's (D) Cauchy's If $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ such that $(a, n) = 1$, then $a^{\emptyset(n)} = 1 \pmod{n}$. This is the statement of theorem. (A) Euler's (B) Fermat's (C) Lagrange's (D) Cauchy's (B) If p is a prime number and $a \in \mathbb{Z}$ such that $p \nmid a$ then $a^{p-1} = 1 \pmod{p}$. This is the statement of Theorem. (A) Euler's (B) Fermat's (C) Lagrange's (D) Cauchy's Let G be a finite group and G is G . Then G is G in G in G is G in G

58)	The remainder obtained when 15 ²⁷ divided by 8 is	D
	(A) 1 (B) 2 (C) 6 (D) 7	
59)	The remainder obtained when $5^{10} - 3^{10}$ divided by 11 is	A
	(A) 0 (B) 1 (C) 3 (D) 5	
60)	The number of cyclic subgroups of a group of order 41 =	С
	(A) 0 (B) 1 (C) 2 (D) 41	
61)	A function $f:(G, *) \to (G_1, *')$ is called a group homomorphism if	В
	$(A) f(a * b) = f(a) * f(b) \text{ for all } a, b \in G$	
	(B) $f(a * b) = f(a) *' f(b)$ for all $a, b \in G$	
	(C) $f(a *' b) = f(a) *' f(b)$ for all $a, b \in G$	
	$(D) f(a *' b) = f(a) + f(b) \text{ for all } a, b \in G$	
62)	If $f:(G, *) \to (G_1, *')$ is a group homomorphism and e, e_1 are identity elements	С
	in G and G_1 respectively, then $f(e) = \dots$	
	(A) e (B) G (C) e_1 (D) 0	
63)	If $f:(G, *) \to (G_1, *')$ is a group homomorphism and $a \in G$, then $f(a^n) = \dots$ For all $n \in \mathbb{Z}$.	В
	(A) e (B) $f(a)^n$ (C) a^n (D) 0	
64)	If $f: (G, *) \to (G_1, *')$ is a group homomorphism, then the set $\{x \in G: f(x) = e_1, identity in G_1\}$ is	В
	(A) homomorphic image of G (B) kernel of f (C) $f(G)$ (D) Imf	
65)	Let $G = \{1, -1, i, -i\}$ be the group under usual multiplication. If a function $f: (\mathbb{Z}, +) \to (G, \times)$ defined by $f(n) = i^n$ for all $n \in \mathbb{Z}$ is a group homomorphism, then $kerf = \dots$	С
	$(A)\mathbb{Z} \qquad \qquad (B) \{0\} \qquad \qquad (C) 4\mathbb{Z} \qquad \qquad (D) \emptyset$	
66)	If a function $f: (\mathbb{R}, +) \to (\mathbb{R}, +)$ defined by $f(x) = \frac{x}{2}$ for all $x \in \mathbb{R}$ is a group homomorphism, then $kerf = \dots$	В
	$(A) \mathbb{R} \qquad \qquad (B) \left\{ 0 \right\} \qquad \qquad (C) \mathbb{Z} \qquad \qquad (D) \emptyset$	
67)	A function $g:(\mathbb{R},+)\to(\mathbb{R},+)$ defined by $g(x)=x+1$ for all $x\in\mathbb{R}$, is	С
	(A) one-one group homomorphism	
	(B) onto group homomorphism	
	(C) not a group homomorphism	
	(D) an isomorphism	

68)	For $n \in \mathbb{N}$, $(n\mathbb{Z}, +) \cong \dots$	С
	$(A)(\mathbb{R},+)$ $(B)(\mathbb{Q},+)$ $(C)(\mathbb{Z},+)$ $(D)(\mathbb{Z}_n,+_n)$	
69)	Every finite cyclic group G of order n is isomorphic to	D
	$(A)(\mathbb{R},+)$ $(B)(\mathbb{Q},+)$ $(C)(\mathbb{Z},+)$ $(D)(\mathbb{Z}_n,+_n)$	
70)	Every infinite cyclic group G is isomorphic to	С
	$(A)(\mathbb{R},+)$ $(B)(\mathbb{Q},+)$ $(C)(\mathbb{Z},+)$ $(D)(\mathbb{Z}_n,+_n)$	
71)	Consider the following statements:	С
	I: Homomorphic image of an abelian group is abelian.	
	II: An isomorphic $f: G \to G$ is known as automorphism.	
	Which of the following is true?	
	(A)Only statement I is correct (B) Only statement II is correct	
	(C) Both the statements are correct (D) None of the above	
72)	If G is a cyclic group with generator a, then the homomorphic image, $f(G) = \dots$	В
	(A) $< a >$ (B) $< f(a) >$ (C) $\{a\}$ (D) $\{e\}$	

73)	Which of the following statements is false?	С
	$(A)(\mathbb{Z},+)\cong(2\mathbb{Z},+)$	
	(B) $G \cong (\mathbb{Z}_4, +_4)$ where $G = \{1, -1, i, -i\}$ is a group under usual multiplication	
	$(C)(\mathbb{Q},+) \cong (\mathbb{Q} - \{0\}, \times)$	
	(D) None of the above	
74)	Which of the following statements is false?	В
	$(A) (\mathbb{Z}, +) \cong (3\mathbb{Z}, +)$	
	(B) If $G = \{1, -1, i, -i\}$ is a group under usual multiplication, then $G \cong (\mathbb{Z}'_4, \times_8)$	
	(C) Any two finite cyclic groups of same order are isomorphic.	
	(C) None of the above	
75)	If $f: G \to G_1$ is a group isomorphism and $a \in G$, then	С
	(A) o(a) < o(f(a))	
	(B) o(a) > o(f(a))	
	(C) o(a) = o(f(a))	
	(D) None of the above	
76)	Consider $(\mathbb{R}, +)$, the group of reals under usual addition and (\mathbb{R}^+, \cdot) , the group of positive reals under usual multiplication. Then the $f: \mathbb{R} \to \mathbb{R}^+$ defined by Is an isomorphism.	A
	$(A) f(x) = 2^x \text{ for all } x \in \mathbb{R}$	
	$(B) f(x) = 2x \text{ for all } x \in \mathbb{R}$	
	$(C) f(x) = x + 2 \text{ for all } x \in \mathbb{R}$	
	$(D) f(x) = x \text{ for all } x \in \mathbb{R}$	

77)	Let $f: G \to G'$ be a group homomorphism. Consider the following statement:	A
	I: G is an abelian group	
	II: $f(G)$ is an abelian group.	
	Which of the following is correct?	
	(A) I implies II only (B) II implies I only	
	(C) I if and only if II (D) Neither I implies II nor II implies I	
78)	Let $f: G \to G'$ be a group homomorphism. Consider the following statement:	A
	I: G is a cyclic group	
	II: $f(G)$ is a cyclic group.	
	Which of the following is correct?	
	(A) I implies II only (B) II implies I only	
	(C) I if and only if II (D) Neither I implies II nor II implies I	
79)	Let $f: G \to G'$ be a group homomorphism. Consider the following statement:	A
	I: G is a finite group	
	II: $f(G)$ is a finite group.	
	Which of the following is correct?	
	(A)I implies II only (B) II implies I only	
	(C) I if and only if II (D) Neither I implies II nor II implies I	
80)	The number of group homomorphisms from the group $(\mathbb{Z}, +)$ onto itself =	D
	(A)0 (B) 1 (C) 2 (D) infinite	

01)	A ' (D +) ' '1+ 1	D
81)	A ring $(R, +, \cdot)$ is said to be commutative if	В
	$(A)a + b = b + a$ for all $a, b \in R$	
	(B) $a \cdot b = b \cdot a$ for all $a, b \in R$	
	(C) $a \cdot b = b \cdot a$ for some $a, b \in R$	
	$(D)a \cdot b = 1 \text{ for all } a, b \in R$	
82)	Which of the following is not a ring under usual addition and multiplication?	С
	$(A)\mathbb{R}$	
	(B) {0}	
	(C) The set of all odd integers	
	$(D)\left\{\frac{p}{q}\in\mathbb{Q}:p,q\in\mathbb{Z}\text{ and }q\text{ is odd integer}\right\}$	
83)	Which of the following rings is commutative?	A
	$(A)(\mathbb{R},+,\cdot)$	
	(B) $\left\{ \begin{bmatrix} a+ib & c+id \\ -c+id & a-ib \end{bmatrix} : a,b,c,d \in \mathbb{R} \right\}$ under usual addition and multiplication of matrices	
	(C) The set of 2×2 matrices over \mathbb{Z} under usual addition and multiplication of matrices	
	(D) None of the above	
84)	Which of the following rings is without identity?	A
	$(A)(2\mathbb{Z},+,\cdot)$	
	(B) $\left\{ \begin{bmatrix} a & a & a \\ a & a & a \\ a & a & a \end{bmatrix} : a \in \mathbb{R} \right\}$ under usual addition and multiplication of matrices	
	(C) $\left\{\frac{p}{q} \in \mathbb{Q}: p, q \in \mathbb{Z} \text{ and } q \text{ is odd integer}\right\}$ under usual addition and multiplication	
	(D) None of the above	

85)	Which of the following rings is non-commutative?	С
	(A) $(2\mathbb{Z}, +, \cdot)$ (B) $\left\{\begin{bmatrix} a & a & a \\ a & a & a \\ a & a & a \end{bmatrix} : a \in \mathbb{R} \right\}$ under usual addition and multiplication of matrices	
	(C) The set of 2×2 matrices over \mathbb{Z} under usual addition and multiplication of matrices	
	(D) None of the above	
86)	Which of the following rings is non-commutative?	С
	$(A)(\mathbb{Q},+,\cdot)$	
	(B) $\left\{ \begin{bmatrix} a & a & a \\ a & a & a \\ a & a & a \end{bmatrix} : a \in \mathbb{R} \right\}$ under usual addition and multiplication of matrices	
	(C) $\left\{\begin{bmatrix} a+ib & c+id \\ -c+id & a-ib \end{bmatrix}: a,b,c,d \in \mathbb{R}\right\}$ under usual addition and multiplication of matrices	
	(D) None of the above	
87)	The identity (unity) element in the ring $\left\{\begin{bmatrix} a & a & a \\ a & a & a \\ a & a & a \end{bmatrix} : a \in \mathbb{R}\right\}$ under usual addition and multiplication of matrices is	С
	$ (A) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} $	
88)	The identity (unity) element in the ring $(\mathbb{Z}, \oplus, \odot)$ is, where $a \oplus b = a + b - 1$ and $a \odot b = a + b - ab$ for all $a, b \in \mathbb{Z}$.	A
	(A)0 (B) 1 (C) 2 (D) 3	

89)	Let $(R, +, \cdot)$ be a ring with identity 1. Which of the following statement is false?	С
	$(A)a \cdot 0 = 0$	
	(B)(-a)b = a(-b)	
	(C) c(a-b) = ac - bc	
	(D)(-1)(-1) = 1	
90)	The number of units in the ring $(\mathbb{Z}_6, +_6, \times_6)$ are	A
	(A)2 (B)3 (C)5 (D)0	
91)	The system $(\mathbb{Z}_6, +_6, \times_6)$ is	В
	(A) not a ring	
	(B) ring but not an integral domain	
	(C) an integral domain but not a field	
	(D) field	
92)	In the ring $(\mathbb{Z}_7, +_7, \times_7)$, $\overline{3} \times_7 (-\overline{4}) = \dots$	В
	(A) $\overline{0}$ (B) $\overline{2}$ (C) $\overline{1}$ (D) $-\overline{2}$	
93)	The multiplicative inverse of $1 + i$ in the ring $\mathbb{Z}[i]$ is	D
	(A) 1 (B) i (C) $1-i$ (D) None of the above	
94)	The number of zero divisors in the ring $(\mathbb{Z}_6, +_6, \times_6)$ are	В
	(A)2 (B) 3 (C) 5 (D) 0	
95)	A commutative ring R without zero divisors is called as	A
93)	(A) an integral domain (B) a field	A
06)	(C) a division ring (D) a Boolean ring	
96)	For $n > 1$, a ring $(\mathbb{Z}_n, +_n, \times_n)$ is an integral domain if and only if	С
	(A) n is odd (B) n is even (C) n is prime (D) n is composite number	

97)	Which of the following is not a field?	D
	$(A)(\mathbb{C},+,\cdot) \qquad (B)(\mathbb{R},+,\cdot) \qquad (C)(\mathbb{Q},+,\cdot) \qquad (D)(2\mathbb{Z},+,\cdot)$	
98)	Which of the following is incorrect?	В
	(A) Every field is an integral domain.	
	(B) Every integral domain is a field.	
	(C) Every finite integral domain is a field.	
	(D) Every field is a division ring.	
99)	Which of the following rings is a Boolean ring?	D
	(A) $(\mathbb{C}, +, \cdot)$ (B) $(\mathbb{R}, +, \cdot)$ (C) $(\mathbb{Z}, +, \cdot)$ (D) $(\mathbb{Z}_2, +_2, \times_2)$	
100)	If R is a Boolean ring, then $a^3 = \dots$ for all $a \in R$	С
	(A)0	
	(B) 1	
	(C) a	
	(D) a^{-1}	