Sr. No.	The Bodwad Sarvajanik Co-op Education Society Ltd, Bodwad Arts, Commerce \& Science College, Bodwad, Dist.-Jalgaon FYBSc Mathematics Paper III MTH 103 (A): Co-ordinate Geometry Questions Bank	Answer
1)	The equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents an ellipse if $\Delta \neq 0$ and \qquad A)) $h^{2}-a b>0$ B) $h^{2}-a b<0$ C) $h^{2}-a b=0$ D) $h=0, a=b$	B
2)	The equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a hyperbola if $\Delta \neq 0$ and \qquad A) $h^{2}-a b<0$ B) $h^{2}-a b=0$ C) $h^{2}-a b>0$ D) $h=0, a=b$	C
3)	The general equation of second degree $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+$ $c=0$ represents a parabola if $\Delta \neq 0$ and \qquad A) $h^{2}-a b<0$ B) $h^{2}-a b=0$ C) $h^{2}-a b>0$ D) $h=0, a=b$	B
4)	The general equation of second degree $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+$ $c=0$ represents a circle if $\Delta \neq 0$ and \qquad A) $h^{2}-a b<0$ B) $h^{2}-a b>0$ C) $h^{2}-a b=0$ D) $a=b$ and $h=0$	D
5)	Two spheres with centres at C_{1} and C_{2} having radii r_{1} and r_{2} respectively are non-intersecting if \qquad A) $c_{1} c_{2}<r_{1}+r_{2}$ B) $c_{1} c_{2}=r_{1}+r_{2}$ C) $c_{1} c_{2}>r_{1}+r_{2}$ D) $\left(r_{1}+r_{2} c_{1} c_{2}\right)^{2}=r^{2}+r_{2}^{2}$	C
6)	Two spheres with centres at C_{1} and C_{2} having radii r_{1} and r_{2} respectively touch each other externally if \qquad A) $c_{1} c_{2}<r_{1}+r_{2}$ B) $c_{1} c_{2}=r_{1}+r_{2}$ C) $c_{1} c_{2}>r_{1}+r_{2}$ D) $\left(c_{1} c_{2}\right)^{2}=r_{1}^{2}+r_{2}^{2}$	B
7)	Two spheres with centres at C_{1} and C_{2} having radii r_{1} and r_{2} respectively touch each other orthogonally if \qquad A) $c_{1} c_{2}=r_{1}+r_{2}$ B) $\left(c_{1} c_{2}\right)^{2}=r_{1}^{2}+r_{2}^{2}$ C) $c_{1} c_{2}>r_{1}+r_{2}$ D) None of these	B
8)	Choose the correct option .Every homogeneous equation of second order in x , y, z represents \qquad A)Cone B)Right circular cylinder C)Ellipsoid D)Hyperboloid of one sheet	A
9)	The equation of a cone with vertex at origin is \qquad A)Linear B)Cubic C)homogeneous D)non homogeneous	C
10)	The general equation of the cone which passes through the co-ordinate axes is- A) $a x+b y+c=0$ B) $f y z+g z x+g x y=0$ C) $x^{2}+y^{2}+2 g x+2 f y+c=0$ D) $f y z+g z x+h x y=0$	B

25	True or false .General Equation of a Plane is $a x^{2}+b y+c z+d=0$, where $\mathrm{a}, \mathrm{b} \mathrm{c}$ are the direction ratios of the normal to the plane A)True B)False	B
26	True or false. In Intercept Form of Plane is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the intercepts made with X, Y and Z -axis respectively. A)True B)False	A
27	True or false. In Intercept Form of Plane is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the intercepts made with X, Y and Z-axis respectively. A)True B)False	B
30	True or false. In Normal Form of Plane $\boldsymbol{l} \boldsymbol{x}+\boldsymbol{m y}+\boldsymbol{n z}=\boldsymbol{p}$ where $1, \mathrm{~m}, \mathrm{n}$ are the direction cosines of the normal to the plane and p perpendicular from the origin to the plane. A)True B)False	A
31	True or false. In Normal Form of Plane $\boldsymbol{l} \boldsymbol{x}+\boldsymbol{m} \boldsymbol{y}+\boldsymbol{n z}=\boldsymbol{p}$ where $1, \mathrm{~m}, \mathrm{n}$ are not the direction cosines of the normal to the plane and p perpendicular from the origin to the plane. A)True B)False	B
32	True or false. Equation of the plane through the point $\left(x_{1}, y_{l,} z_{l}\right)$ is given by $a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$ where $\mathrm{a}, \mathrm{b} \mathrm{c}$ are the direction ratios of the normal to the plane. A)True B)False	A
33	True or false. Equation of the plane through the point $\left(x_{1}, y_{l}, z_{l}\right)$ is given by $a\left(x-x_{1}\right)^{2}+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0 \quad$ where $\mathrm{a}, \mathrm{b} \mathrm{c}$ are the direction ratios of the normal to the plane. A)True B)False	B
34	True or false. Equation of the plane through the point $\left(x_{1,}, y_{1}, z_{l}\right)$ is given by $a\left(x-x_{1}\right)^{2}+b\left(y-y_{1}\right)^{2}+c\left(z-z_{1}\right)=0 \quad$ where $\mathrm{a}, \mathrm{b} \mathrm{c}$ are the direction ratios of the normal to the plane. A)True B)False	B
35	True or false. The length of perpendicular p from the point $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ to the plane $a x+b y+c z+d=0$ is given by $p=\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}$. A)True B)False	A

36	True or false. The length of perpendicular p from the point $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ to the plane $a x+b y+c z+d=0$ is given by $p=\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a+b+c}}$. A)True B)False	B
37	True or false. The length of perpendicular p from the point $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ to the plane $a x+b y+c z+d=0$ is given by $p=\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a+b+c-d}}$. A)True B)False	B
38	True or false. The length of perpendicular p from the point $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ to the plane $a x+b y+c z+d=0$ is given by $p=\frac{a x_{1}+b y_{1}+c z_{1}}{\sqrt{a^{2}+b^{2}+c^{2}}}$. A)True B)False	B
39	True or false. .In Two Point Form, Equation of a straight line passing through $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(x_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is given by $\frac{x-x_{1}}{x_{1}-x_{2}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$ A)True B)False	B
40	True or false. .In Two Point Form, Equation of a straight line passing through $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(x_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is given by $\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$ A)True B)False	A
41	True or false. .In Two Point Form, Equation of a straight line passing through $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(x_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is given by $\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{1}-z_{2}}$ A)True B)False	B
42	True or false. .In Two Point Form, Equation of a straight line passing through $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(x_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is given by $\frac{x-x_{1}}{x_{1}-x_{2}}=\frac{y-y_{1}}{y_{1}-y_{2}}=\frac{z-z_{1}}{z_{1}-z_{2}}$ A)True B)False	A
43	True or false. .In Two Point Form, Equation of a straight line passing through $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(x_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is given by $\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{1}-y_{2}}=\frac{z-z_{1}}{z_{1}-z_{2}}$ A)True B)False	B
44	True or false. .In One Point Form, Equation of a straight line $\frac{x-x_{1}}{a}=$ $\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the direction ratios of the line. A)True B)False	A
45	True or false. .In One Point Form, Equation of a straight line $\frac{x-x_{1}}{a}=$ $\frac{y_{1}-y}{b}=\frac{z-z_{1}}{c}$ where a, b,c are the direction ratios of the line. A)True B)False	B
46	True or false. Equation of a sphere with centre at $\mathrm{C}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ and Radius " r " is given by $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}$.	A

	A)True B)False	
47	True or false. Equation of a sphere with centre at $\mathrm{C}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ and Radius " r " is given by $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r$. A)True B)False	B
48	True or false. Equation of a sphere with centre at $\mathrm{C}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ and Radius " r " is given by $(x-a)^{3}+(y-b)^{2}+(z-c)^{2}=r^{2}$. A)True B)False	B
49	True or false. Equation of a sphere with centre at $\mathrm{C}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ and Radius " r " is given by $(x-a)+(y-b)+(z-c)^{2}=r^{2}$. A)True B)False	B
50	True or false. Equation of a sphere with centre at $\mathrm{C}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ and Radius " r " is given by $(x-a)+(y-b)+(z-c)=r^{2}$. A)True B)False	B
51	True or false. In General equation of a sphere $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$ its centre is given by $(-u,-v,-w)$. A)True B)False	A
52	True or false. In General equation of a sphere $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$ its centre is given by (u, v, w). A)True B)False	B
53	True or false. In General equation of a sphere $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$ its centre is given by $(u,-v,-w)$. A)True B)False	B
54	True or false. In General equation of a sphere $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$ its radius is given by $\sqrt{u^{2}+v^{2}+w^{2}-d}$ A)True B)False	A
55	True or false. In General equation of a sphere $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$ its radius is given by $\sqrt{u^{2}+v^{2}+w^{2}}$	B

	A)True B)False	
56	True or false. In General equation of a sphere $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$ its radius is given by $\sqrt{u^{2}+v^{2}-d}$ A)True B)False	B
57	True or false. In Diameter form, Equation of a sphere whose end points of diameter are $\mathrm{A}\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right), \mathrm{B}\left(x_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is given by $\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)+\left(z-z_{1}\right)\left(z-z_{2}\right)=0$ A)True B)False	A
58	True or false. In Diameter form, Equation of a sphere whose end points of diameter are $\mathrm{A}\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right), \mathrm{B}\left(x_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is given by $\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)+\left(z-z_{1}\right)\left(z-z_{2}\right)=1$ A)True B)False	B
59	True or false. Equation of a sphere passing through the four points $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(x_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right),\left(x_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right)$ and $\left(x_{4}, \mathrm{y}_{4}, \mathrm{z}_{4}\right)$. $\left\|\begin{array}{ccccc} x^{2}+y^{2}+z^{2} & x & y & z & 1 \\ x_{1}{ }^{2}+y_{1}{ }^{2}+z_{1}{ }^{2} & x_{1} & y_{1} & z_{1} & 1 \\ x_{2}{ }^{2}+y_{2}{ }^{2}+z_{2}{ }^{2} & x_{2} & y_{2} & z_{2} & 1 \\ x_{3}{ }^{2}+y_{3}{ }^{2}+z_{3}{ }^{2} & x_{3} & y_{3} & z_{3} & 1 \\ x_{4}{ }^{2}+y_{4}{ }^{2}+z_{4}{ }^{2} & x_{4} & y_{4} & z_{4} & 1 \end{array}\right\|=0$ A)True B)False	A
60	True or false. Equation of a sphere passing through the four points $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(x_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right),\left(x_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right)$ and $\left(x_{4}, \mathrm{y}_{4}, \mathrm{z}_{4}\right)$. $\left\|\begin{array}{ccccc} x^{2}+y^{2}+z^{2} & x & y & z & 1 \\ x_{1}{ }^{2}+y_{1}{ }^{2}+z_{1}{ }^{2} & x_{1} & y_{1} & z_{1} & 1 \\ x_{2}{ }^{2}+y_{2}{ }^{2}+z_{2}{ }^{2} & x_{2} & y_{2} & z_{2} & 1 \\ x_{3}{ }^{2}+y_{3}{ }^{2}+z_{3}{ }^{2} & x_{3} & y_{3} & z_{3} & 1 \\ x_{4}{ }^{2}+y_{4}{ }^{2}+z_{4}{ }^{2} & x_{4} & y_{4} & z_{4} & 1 \end{array}\right\|=1$ A)True B)False	B
61	True or false. Equation of a sphere passing through the four points $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(x_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right),\left(x_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right)$ and $\left(x_{4}, \mathrm{y}_{4}, \mathrm{z}_{4}\right)$.	B

	$\left\|\begin{array}{ccccc} x^{2}+y^{2}+z^{2} & x & y & z & x y \\ x_{1}{ }^{2}+y_{1}{ }^{2}+z_{1}{ }^{2} & x_{1} & y_{1} & z_{1} & 1 \\ x_{2}{ }^{2}+y_{2}{ }^{2}+z_{2}{ }^{2} & x_{2} & y_{2} & z_{2} & 1 \\ x_{3}{ }^{2}+y_{3}{ }^{2}+z_{3}{ }^{2} & x_{3} & y_{3} & z_{3} & 1 \\ x_{4}{ }^{2}+y_{4}{ }^{2}+z_{4}{ }^{2} & x_{4} & y_{4} & z_{4} & 1 \end{array}\right\|=0$ A)True B)False	
62	True or false. The equation of a tangent Plane at $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ for the sphere $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$ is given by $x x_{1}+y y_{1}+z z_{1}+u\left(x+x_{1}\right)+v\left(y+y_{1}\right)+w\left(z+z_{1}\right)+d=0$ A)True B)False	A
63	True or false. The section of a sphere by a plane is circle therefore $\mathrm{S}=x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$ and $\mathrm{P}=a x+b y+$ $c z+d=0$ together represents the circle. A)True B)False	A
64	True or false. The equation of a tangent Plane at $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ for the sphere $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$ is given by $x x_{1}+y y_{1}+z z_{1}+u\left(x+x_{1}\right)+v\left(y+y_{1}\right)+w\left(z+z_{1}\right)=0$ A)True B)False	B
65	True or false. $\mathrm{S}=x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$ and $\mathrm{P}=a x+b y+$ $c z+d=0$ together represents the Sphere. A)True B)False	B
66	True or false. $\mathrm{S}=x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$ and $\mathrm{P}=a x+b y+$ $c z+d=0$ together represents the Cone. A)True B)False	B
67	True or false. $\mathrm{S}=x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0 \text { and } \mathrm{P}=a x+b y+$ $c z+d=0$ together represents the Right circular Cylinder . A)True B)False	B
68	True or false. $\begin{aligned} & \mathrm{S}=x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0 \text { and } \mathrm{P}=a x+b y+ \\ & c z+d=0 \text { together represents the Enveloping Cylinder } . \end{aligned}$	B

	A)True B)False	
69	True or false. $\mathrm{S}=x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0 \text { and } \mathrm{P}=a x+b y+$ $c z+d=0$ together represents the Right Circular Cone. A)True B)False	B
70	True or false. $\mathrm{S}=x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0 \text { and } \mathrm{P}=a x+b y+$ $c z+d=0$ together represents the Enveloping Cone. A)True B)False	B
71	When the origin is shifted to $(1,2)$ direction of axes remaining same ,new coordinate of $(7,5)$ will be A) $(6,3) \mathrm{B})(1,2) \mathrm{C})(0,0) \mathrm{D})(70,50)$	A
72	When the origin is shifted to $(1,2)$ direction of axes remaining same , new coordinate of $(0,5)$ will be A) $(6,3) \mathrm{B})(-1,3) \mathrm{C})(0,0) \mathrm{D})(70,50)$	B
73	True or false. To shift the coordinates of origin to (h, k) replace x by $(x+h)$ and y by $(y+k)$ in the given equation of the curve and get the new equation of curve. A)True B)False	A
74	In conic section ,The fixed point in the plane is called A)Focus B)Directrix C)Eccentricity D)Parabola	A
75	In conic section ,The fixed st. line in the plane is called A)Focus B)Directrix C)Eccentricity D)Parabola	B
76	Choose the correct option. The radius of sphere $x^{2}+y^{2}+z^{2}+4 x-6 y-$ $8 z-2=0$ A) 31 B) $\sqrt{31}$ C) 24 D) None of these	B
77	Choose the correct option .The coordinates of centre of sphere $x^{2}+y^{2}+$ $z^{2}+4 x-6 y-8 z-2=0$ A) $(-2,3,4)$ B) $(2,3,4)$ C) $(0,0,0)$ D)None of these	A
78	Fixed line is called the \ldots of right circular cone. A)Semi vertical angle B) Axis C) generator D)None of these	B
79	Constant angle is called the \ldots of right circular cone. A)Semi vertical angle B) Axis C) generator D)None of these	A
80	Drs of generators of right circular cylinder whose axis is parallel to Z axis. $\begin{array}{ll}\text { A) } 1,1,1 & \text { B) } 1,2,1 \text { C) } 0,0,1 \\ \text { D) None of these }\end{array}$	C
81	Drs of generators of right circular cylinder whose axis having equation is $x=y=z$ $\begin{array}{lll}\text { A) } 1,1,1 & \text { B) } 1,2,1 \text { C) }-1,-2,1 & \text { D) None of these }\end{array}$	A
82	The section of a right circular cone by plane perpendicular to axis is a..... A)parabola B)Hyperbola C)Circle D) None of these	C
83	Drs of generators of right circular cylinder whose axis is parallel to X axis.	B

	A) $1,0,1$ B) $1,0,0 \mathrm{C}) 0,0,1 \mathrm{D})$ None of these	
84	Drs of generators of right circular cylinder whose axis is parallel to Y axis. $\begin{array}{lll}\text { A) } 1,0,1 & \text { B) } 1,0,0 \text { C }) 0,1,0 \quad \text { D) None of these }\end{array}$	C
85	The section of a right circular cylinder by plane perpendicular to axis is a..... A)parabola B)Hyperbola C)Circle D) None of these	C
86	True or false. Enveloping cylinder of the sphere is always right circular cylinder A)True B)False	A
87	Radius of enveloping cylinder of the sphere $x^{2}+y^{2}+z^{2}=9$ is \ldots A)3 B) 4 C) 5 D) None of these	A
88	Radius of enveloping cylinder of the sphere $x^{2}+y^{2}+z^{2}=25$ is \ldots A)3 B)4 C) 5 D) None of these	C
89	Drs of generators of right circular cylinder whose axis having equation is $\frac{x-1}{2}=\frac{y-4}{5}=\frac{z-6}{7}$ A) $2,5,-7$ B) $2,5,7$ C) $1,4,6$ D) None of these	B
90	Drs of generators of right circular cylinder whose axis having equation is $\frac{x-1}{22}=\frac{y-4}{55}=\frac{z-6}{77}$ A) $2,5,-7$ B) $2,5,7$ C) $1,4,6$ D) None of these	B
91	Tangent Plane to the sphere $x^{2}+y^{2}+z^{2}=25$ at $(1,2,3)$ is given by \ldots A) $x+2 y+3 z=25$ B) $x+y+z=25 C) x+2 y+3 z=0$ D) None of these	A
92	Tangent Plane to the sphere $x^{2}+y^{2}+z^{2}-4 x+2 y-4=0$ at $(4,-2,2)$ is given by ... A) $x+2 y+3 z=25$ B) $2 x-y+2 z-14=0 \quad$ C) $x+2 y+3 z=0$ D) None of these	B
93	Tangent Plane to the sphere $x^{2}+y^{2}+z^{2}-2 x-4 y+2 z-3=0$ at $(-$ $1,4,-2$) is given by ... A) $x+2 y+3 z=25$ B) $2 x-2 y+z+12=0$ C) $x+2 y+3 z=0$ D) None of these	B
94	Choose the correct option. The radius of sphere $x^{2}+y^{2}+z^{2}+2 x-2 y-$ $4 z-19=0$ A)5 B) $\sqrt{31} \quad$ C) 24 D)None of these	A
95	Choose the correct option.The Centre of sphere $x^{2}+y^{2}+z^{2}+2 x-2 y-$ $4 z-19=0$ A) $(5,0,0) \mathrm{B})(2,2,4)$ C) $(-1,1,2)$ D)None of these	C
96	Choose the correct option. The radius of sphere $x^{2}+y^{2}+z^{2}+4 x-6 y+$ $2 z-10=0$ A) 31 B) $\sqrt{24}$ C) 24 D)None of these	B
97	Choose the correct option. The radius of sphere $x^{2}+y^{2}+z^{2}+4 x-6 y+$ $2 z-10=0$ A) $(5,0,0) \mathrm{B})(2,2,4)$ C) $(-2,3,1)$ D)None of these	C
98	Drs of normal to the plane having equation $2 x-y+2 z-14=0$ at point $(4,-2,2)$ is A) $(5,0,0)$ B) $(2,-1,2) \quad$ C) $(-2,3,1)$ D) None of these	B
99	Drs of normal to the plane having equation $3 x-y+12 z-14=0$ at point $(4,-2,2)$ is A) $(5,0,0)$ B) $(3,-1,12)$ C) $(-2,3,1)$ D) None of these	B
100	Coordinates of the point $(\sqrt{3}, 1)$ after the axes have been rotated through angle $\frac{\pi}{6}$ A) $(2,0) \mathrm{B}(3.0)$ C) $(\sqrt{3}, 1)$ D)None of these	A

