Q. No.	The Bodwad Sarvajanik Co-op Education Society Ltd, Bodwad Arts, Commerce \& Science College, Bodwad, Dist.-Jalgaon FYBSc Sem1 Mathematics Paper I MTH 101 Matrix Algebra Question Bank	Ans
1)	If $A=\left[a_{i j}\right]$ be a square matrix of order 3 then cofactor of $a_{13}=\ldots \ldots$. (A) $A_{13}=M_{31}$ (B) $A_{13}=M_{13}$ (C) $A_{13}=-M_{13}$ (D) None of these	B
2)	If $A=\left[a_{i j}\right]$ be a square matrix of order 3 then cofactor of $a_{23}=$ \qquad (A) $A_{23}=M_{23}$ (B) $A_{23}=M_{32}$ (C) $A_{23}=-M_{23}$ (D) None of these	C
3)	If A is square matrix of order n then $A \cdot \operatorname{adj} A=$ \qquad (A) $\|A\|$ (B) $\|A\| I$ (C) I (D) None of these	B
4)	If A is square matrix of order n then $\operatorname{adj} A=$ \qquad (A) $\|A\| A^{-1}$ (B) $\|A\|$ (C) A^{-1} (D) None of these	A
5)	If A, B are non-singular square matrices of the same order n then $\operatorname{adj}(A B)=\ldots \ldots$. (A) adjA.adjB (B) adjBA (C) $a d j B \cdot a d j A$ (D) None of these	C
6)	If A is square matrix of order n then $\operatorname{adj}(\operatorname{adj} A)=\ldots \ldots \ldots$ (A) $\|A\|^{n-1} A$ (B) $\|A\|^{n-2} A$ (C) $\|A\|^{n-2} I$ (D) None of these	B
7)	If A, B are non-singular square matrices of the same order then $(A B)^{-1}=\ldots \ldots \ldots$ (A) $A^{-1} B^{-1}$ (B) $B^{-1} A^{-1}$ (C) $B \cdot A$ (D) None of these	B

8)	Let A be a square matrix of order n. If there exist a matrix B such that $A B=B A=I$ then (A) B is inverse of A (B) $A=B$ (C) B is not inverse of A (D) None of these	A
9)	If A is non singular matrix then $A^{-1}=$ \qquad (A) $a d j A$ (B) $\|A\| a d j A$ (C) $\frac{1}{\|A\|} \operatorname{adj} A$ (D) None of these	C
10)	If A is non singular matrix then $\left\|A^{-1}\right\|=$ \qquad (A) $\|A\|$ (B) $-\|A\|$ (C) $\frac{1}{\|A\|}$ (D) None of these	C
11)	If $A=\left[\begin{array}{cc}2 & -3 \\ 1 & 5\end{array}\right]$ then $A^{-1}=$ \qquad (A) $\frac{1}{13}\left[\begin{array}{cc}5 & 3 \\ -1 & 2\end{array}\right]$ (B) $\frac{1}{7}\left[\begin{array}{cc}5 & 3 \\ -1 & 2\end{array}\right]$ (C) $\frac{1}{13}\left[\begin{array}{cc}5 & -3 \\ 1 & 2\end{array}\right]$ (D) None of these	A
12)	If $A=\left[\begin{array}{cc}3 & 1 \\ 4 & -2\end{array}\right]$ then $A^{-1}=\ldots \ldots \ldots$ (A) $\frac{1}{10}\left[\begin{array}{cc}-2 & -1 \\ -4 & 3\end{array}\right]$ (B) $\frac{1}{-10}\left[\begin{array}{cc}-2 & -1 \\ -4 & 3\end{array}\right]$ (C) $\frac{1}{-10}\left[\begin{array}{cc}-2 & 1 \\ 4 & 3\end{array}\right]$ (D) None of these	B
13)	If A is square matrix of order 3 and $\|A\|=4$ then $A . \operatorname{adj} A=\ldots \ldots$. (A) 4 (B) $4 I$ (C) I (D) None of these	B
14)	If A is square matrix of order 5 and $\|A\|=2$ then $\|\operatorname{adj} A\|=\ldots \ldots .$. (A) 32 (B) 8 (C) 16 (D) None of these	C
15)	If A is singular matrix then $A .\|\operatorname{adj} A\|=\ldots \ldots .$. (A) I (B) 0 (C) A (D) None of these	B

16)	A system of linear equations $A X=B$ is said to be homogeneous. If B is $\ldots \ldots$. (A) Null Matrix (B) Non zero matrix (C) Singular matrix (D) None of these	A
17)	A system of linear equations $A X=B$ is said to be non-homogeneous. If B is $\ldots \ldots$. (B) Null Matrix (B) Non zero matrix (C) Singular matrix (D) None of these	B
18)	A system of linear equations $A X=B$ is said to be consistent if system has (A) No solution (B) Unique solution (C) Solution (D) None of these	C
19)	A system of linear equations $A X=B$ is said to be inconsistent if system has $\ldots \ldots$. (A) No solution (B) Unique solution (C) Solution (D) None of these	A
20)	A system of linear equations $A X=B$ is said to be consistent if system has (A) $\rho(A) \neq \rho(A, B)$ (B) $\rho(A)=\rho(A, B)$ (C) $\rho(A)<\rho(A, B)$ (D) None of these	B
21)	A system of linear equations $A X=B$ is said to be inconsistent if system has $\ldots \ldots .$. (A) $\rho(A) \neq \rho(A, B)$ (B) $\rho(A)=\rho(A, B)$ (C) $\rho(A)<\rho(A, B)$ (D) None of these	A
22)	A system of linear equations $A X=B$ of n unknowns such that $\rho(A)=\rho(A, B)=n$ then system has solution. (A) No (B) Unique (C) Infinite (D) None of these	B
23)	A system of linear equations $A X=B$ of n unknowns such that $\rho(A)=\rho(A, B)<n$ then system has \qquad . solution. (A) No (B) Unique (C) Infinite (D) None of these	C

24)	A homogeneous system of three linear equations in three unknowns has a unique solution if (A) $\|A\|=0$ (B) $\|A\| \neq 0$ (C) $\|A\|=1$ (D) None of these	B
25)	A homogeneous system of three linear equations in three unknowns has a trivial solution if \qquad (A) $\|A\|=0$ (B) $\|A\| \neq 0$ (C) $\|A\|=1$ (D) None of these	B
26)	A homogeneous system of three linear equations in three unknowns has a infinite number of solution if \qquad (A) $\|A\|=0$ (B) $\|A\| \neq 0$ (C) $\|A\|=1$ (D) None of these	A
27)	A homogeneous system of three linear equations in three unknowns has a non trivial solution if \qquad (A) $\|A\|=0$ (B) $\|A\| \neq 0$ (C) $\|A\|=1$ (D) None of these	A
28)	If A is non singular matrix then solution of system of linear equations $A X=B$ is given by \qquad (A) $X=B A^{-1}$ (B) $X=A B$ (C) $X=A^{-1} B$ (D) None of these	C
29)	If A is an orthogonal matrix if $\|A\|=\ldots \ldots$ (A) I (B) 0 (C) ± 1 (D) None of these	C
30)	If A is an orthogonal matrix then $A^{-1}=\ldots \ldots$ (A) A (B) A^{\prime} (C) I (D) None of these	B
31)	The product of two orthogonal matrices is \qquad (A) Orthogonal (B) Not orthogonal (C) Proper orthogonal (D) None of these	A

32)	If $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ then A is \qquad (A) Improper orthogonal (B) Proper orthogonal (C) Not orthogonal (D) None of these	B
33)	If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$ then A is \qquad (A) Improper orthogonal (B) Proper orthogonal (C) Not orthogonal (D) None of these	A
34)	Let A be a nonzero square matrix and X be a nonzero (vector) column matrix. If there exist a number λ such that $A X=\lambda X$ then λ is called \qquad of the matrix A. (A) Eigen vector (B) Eigen value (C) Not eigen value (D) None of these	B
35)	Let A be a nonzero square matrix and X be a nonzero (vector) column matrix. If there exist a number λ such that $A X=\lambda X$ then X is called \qquad of the matrix A. (A) Eigen vector (B) Eigen value (C) Not eigen value (D) None of these	A
36)	Let A be a nonzero square matrix then characteristic polynomial of A is (A) $\|A-\lambda I\|=1$ (B) $\|A-\lambda I\|=0$ (C) $\|A-\lambda I\|$ (D) $(A-\lambda I)$	C
37)	Let A be a nonzero square matrix then characteristic Equation of A is (A) $(A-\lambda I)=0$ (B) $\|A-\lambda I\|=0$ (C) $\|A-\lambda I\|$ (D) None of these	B
38)	Let A is non zero square matrix k is a non zero scalar. If λ is eigen value of A then eigen value of $k A$ is \qquad (A) $k \lambda$ (B) λ (C) $\frac{k}{\lambda}$ (D) None of these	A
39)	If λ is an eigen value of a non singular matrix A then an eigen value of A^{m} is (A) λ (B) λ^{m} (C) 2λ (D) None of these	B

40)	If λ is an eigen value of a non singular matrix A then an eigen value of A^{-1} is (A) λ (B) $\frac{1}{\lambda}$ (C) $-\lambda$ (D) None of these	B
41)	If λ is an eigen value of a non singular matrix A then an eigen value of $\operatorname{adj} A$ is \qquad (A) $\frac{\|A\|}{\lambda}$ (B) $\lambda\|A\|$ (C) $\frac{\lambda}{\|A\|}$ (D) None of these	A
42)	If λ is an eigen value of a non singular matrix A then an eigen value of A^{2} is $\ldots \ldots$. (B) λ (B) λ^{2} (C) 2λ (D) None of these	B
43)	If $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$ then the characteristic polynomial of A is \qquad (A) $\lambda^{2}-5 \lambda+8$ (B) $\lambda^{2}-5 \lambda+4$ (C) 2λ (D) None of these	B
44)	If origin is shifted to the point (h, k) the direction of axes remains same then translation of point (x, y) is \qquad (A) $(x-h, y-k)$ (B) $(x+h, y+k)$ (C) (x, y) (D) None of these	B
45)	The translation of the point (x, y) by h units in the x-direction and k units in y direction is (A) $(x+h, y+k)$ (B) $(x-h, y-k)$ (C) (x, y) (D) None of these	A
46)	The translation of the point $(2,3)$ by 3 units in the x-direction and 4 units in y direction is (A) $(-5,7)$ (B) $(7,5)$ (C) $(5,7)$ (D) None of these	C
47)	The translation of the point $(3,-2)$ by 4 units in the x -direction and 6 units in y direction is \qquad (A) $(7,4)$ (B) $(4,7)$ (C) $(7,8)$ (D) None of these	A

48)	If origin is shifted to the point (h, k) the direction of axes remains same then translation matrix is \qquad (A) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ h & k & 1\end{array}\right]$ (B) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ h & -k & 1\end{array}\right]$ (C) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -h & -k & 1\end{array}\right]$ (D) None of these	A
49)	The translation matrix when a point translates by 4 units in the x -direction and 3 units in y direction is (A) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & -3 & 1\end{array}\right]$ (B) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 3 & 1\end{array}\right]$ (C) $\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 3 & 0 \\ 1 & 1 & 1\end{array}\right]$ (D) None of these	B
50)	The rotation matrix when rotate the point (x, y) by angle θ in counter clockwise direction is \qquad (A) $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ (B) $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ (C) $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$ (D) None of these	B
51)	The rotation matrix when rotate the point (x, y) by angle θ in anticlockwise direction is \qquad (A) $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ (B) $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ (C) $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$ (D) None of these	A
52)	The rotation matrix when rotate the point (x, y) by angle $\frac{\pi}{2}$ in counter clockwise direction is (A) $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ (B) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ (C) $\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$ (D) None of these	A
53)	The rotation matrix when rotate the point (x, y) by angle $\frac{\pi}{2}$ in anticlockwise clockwise direction is \qquad (B) $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ (B) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ (C) $\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$ (D) None of these	A
54)	The rotation matrix when rotate the point (x, y) by angle π in counter clockwise direction is \qquad (A) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$ (C) $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ (D) None of these	C

55)	The rotation matrix when rotate the triangle $A(x, y), B(x, y), C(x, y)$ by an angle θ in counter clockwise direction is \qquad (A) $\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$ (C) $\left[\begin{array}{ccc}-\cos \theta & \sin \theta & 0 \\ \sin \theta & -\cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$ (D) None of these	A
56)	The rotation matrix when rotate the triangle $A(x, y), B(x, y), C(x, y)$ by an angle $\frac{\pi}{2}$ in counter clockwise direction is \qquad (A) $\left[\begin{array}{ccc}0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ (C) $\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ (D) None of these	B
57)	The reflection matrix when reflect point A about the line $y=x$ is \qquad (A) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ (B) $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ (C) $\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$ (D) None of these	A
58)	The reflection matrix when reflect point A about the line x-axis is \qquad (A) $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ (C) $\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$ (D) None of these	B
60	Choose the correct option .reflecion of the point $\mathrm{P}(1,2)$ with respect to X axis is... (A) $(1,-2)$ (B) $(4,7)$ (C) $(7,8)$ (D) None of these	A
61	Choose the correct option .reflecion of the point $\mathrm{P}(1,2)$ with respect to Y axis is... (B) $(-1,2)$ (B) $(4,7)$ (C) $(7,8)$ (D) None of these	A
62	Choose the correct option .reflecion of the point $\mathrm{P}(6,2)$ with respect to X axis is... (A) $(6,-2)$ (B) $(4,7)$ (C) $(7,8)$ (D) None of these	A
63	Choose the correct option .reflecion of the point $\mathrm{P}(1,12)$ with respect to Y axis is... (A) $(-1,12)$ (B) $(4,7)$ (C) $(7,8)$ (D) None of these	A
64	Meaning of $\mathrm{S}_{\mathrm{x}}=\mathrm{S}_{\mathrm{y}}>1$ is \ldots (A) Uniform Contraction (B)Uniform Magnification (C)No Change (D) None of these	B
65	Meaning of $\mathrm{S}_{\mathrm{x}}=\mathrm{S}_{\mathrm{y}}<1$ is \ldots (A) Uniform Contraction (B)Uniform Magnification (C)No Change (D) None of these	A
66	Meaning of $\mathrm{S}_{\mathrm{x}}=\mathrm{S}_{\mathrm{y}}=1$ is \ldots (B) Uniform Contraction (B)Uniform Magnification (C)No Change (D) None of these	A
67	What will be the transformation matrix if we want to enlarge the entire figure by 3 times (A) $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 3\end{array}\right]$ (C) $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right]$ (D) None of these	C
68	What will be the transformation matrix if we want to enlarge the entire figure by 2 times	C

	(A) $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right] \quad$ (B) $\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 3\end{array}\right] \quad$ (C) $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right] \quad$ (D) None of these	
69	What will be the transformation matrix if we want to the contract picture by 50% of its size (A) $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 3\end{array}\right]$ (C) $\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]$ (D) None of these	C
70	What will be the transformation matrix if we want to the contract picture by 20% of its size (A) $\left[\begin{array}{ccc}1 / 5 & 0 & 0 \\ 0 & 1 / 5 & 0 \\ 0 & 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 3\end{array}\right]$ (C) $\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]$ (D) None of these	A
71	What will be the transformation matrix if we want to the contract picture by 25% of its size (B) $\left[\begin{array}{ccc}1 / 4 & 0 & 0 \\ 0 & 1 / 4 & 0 \\ 0 & 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 3\end{array}\right]$ (C) $\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]$ (D) None of these	A
72	What will be the transformation matrix if we want to the contract picture by 10% of its size (C) $\left[\begin{array}{ccc}1 / 10 & 0 & 0 \\ 0 & 1 / 10 & 0 \\ 0 & 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 3\end{array}\right]$ (C) $\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]$ (D) None of these	A
73	What will be the transformation matrix if we want to the contract picture by half of its size (B) $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 3\end{array}\right]$ (C) $\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]$ (D) None of these	C
74	What will be the transformation matrix if we want to enlarge the entire figure by double of its size (B) $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 3\end{array}\right]$ (C) $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$ (D) None of these	C
75	What will be the transformation matrix if we want to enlarge the entire figure by 5 times (C) $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 3\end{array}\right]$ (C) $\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1\end{array}\right]$ (D) None of these	C
76	What will be the x shear transformation matrix if x shear parameter $\mathrm{b}=2$ (A) $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ (C) $\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1\end{array}\right]$ (D) None of these	B
77	What will be the x shear transformation matrix if x shear parameter $\mathrm{b}=12$ (A) $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 12 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ (C) $\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1\end{array}\right]$ (D) None of these	B
78	What will be the x shear transformation matrix if x shear parameter $\mathrm{b}=8$ (A) $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{lll}1 & 0 & 0 \\ 8 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ (C) $\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1\end{array}\right]$ (D) None of these	B
79	What will be the y shear transformation matrix if y shear parameter $\mathrm{a}=2$ (A) $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ (C) $\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1\end{array}\right]$ (D) None of these	B

80	What will be the y shear transformation matrix if y shear parameter $a=3$ (A) $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ (C) $\left[\begin{array}{lll}1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ (D) None of these	C
81	What will be the y shear transformation matrix if y shear parameter $a=7$ (A) $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$ (B) $\left[\begin{array}{lll}1 & 7 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ (C) $\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1\end{array}\right]$ (D) None of these	B
82	If $A=\left[\begin{array}{ll}6 & 2 \\ 0 & 3\end{array}\right]$ then the characteristic polynomial of A is \qquad (A) $\lambda^{2}-5 \lambda+8$ (B) $\lambda^{2}-9 \lambda+18$ (C) 2λ (D) None of these	B
83	If $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ then the characteristic polynomial of A is \qquad (B) $\lambda^{2}-5 \lambda+8$ (B) $\lambda^{2}-4 \lambda+3$ (C) 2λ (D) None of these	B
84	If $A=\left[\begin{array}{ll}6 & 2 \\ 0 & 3\end{array}\right]$ then the characteristic equation of A is \qquad (C) $\lambda^{2}-9 \lambda+18=0$ (B) $\lambda^{2}-9 \lambda+18$ (C) 2λ (D) None of these	A
85	If $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ then the characteristic equation of A is \qquad (D) $\lambda^{2}-4 \lambda+3=0$ (B) $\lambda^{2}-4 \lambda+3$ (C) 2λ (D) None of these	A
86	If $A=\left[\begin{array}{cc}6 & 12 \\ 0 & 3\end{array}\right]$ then the characteristic equation of A is \qquad (A) $\lambda^{2}-9 \lambda+18=0$ (B) $\lambda^{2}-9 \lambda+18$ (C) 2λ (D) None of these	A
87	If $A=\left[\begin{array}{ll}2 & 2 \\ 0 & 4\end{array}\right]$ then the characteristic equation of A is \qquad (A) $\lambda^{2}-6 \lambda+8=0$ (B) $\lambda^{2}-9 \lambda+18$ (C) 2λ (D) None of these	A
88	If $A=\left[\begin{array}{ll}2 & 6 \\ 0 & 4\end{array}\right]$ then the characteristic equation of A is \qquad (B) $\lambda^{2}-6 \lambda+18=0$ (B) $\lambda^{2}-6 \lambda+8=0$ (C) 2λ (D) None of these	B
89	If $A=\left[\begin{array}{ll}2 & 5 \\ 0 & 4\end{array}\right]$ then the characteristic equation of A is \qquad (C) $\lambda^{2}-6 \lambda+8=0$ (B) $\lambda^{2}-9 \lambda+18$ (C) 2λ (D) None of these	A
90	If $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 4\end{array}\right]$ then the characteristic equation of A is \qquad (D) $\lambda^{2}-6 \lambda+8=0$ (B) $\lambda^{2}-5 \lambda+4=0$ (C) 2λ (D) None of these	B
91	True or False $A^{-1}=\frac{1}{\|A\|}$ adj A A)True B)False	A
92	True or False The Eigen values of A and A' (i.e. Transpose of A) are equal. A)True B)False	A

93	True or False .Sum of the all eigen Values of square matrix A is its trace (i.e. sum of principal Diagonal elements) A)True B)False	A
94	True or False.Every square matrix satisfies its characteristic equation A)False B)True	B
95	If $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ then the characteristic equation of A is \qquad (A) $\lambda^{2}+8=0$ (B) $\lambda^{2}-5 \lambda+4=0$ (C) $\lambda^{2}-4 \lambda-5=0$ (D) None of these	C
96	If $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ then the characteristic Polynomial of A is \qquad (A) $\lambda^{2}-4 \lambda-5$ (B) $\lambda^{2}-5 \lambda+4=0$ (C) $\lambda^{2}-4 \lambda-5=0$ (D) None of these	A
97	True or False A orthogonal Matrix A is called improper orthogonal if $\|A\|=-1$ A)True B)False	A
98	True or False A orthogonal Matrix A is called improper orthogonal if $\|A\|=0$ A)True B)False	B
99	True or False $\varrho(A B) \geq \min \{\varrho(A), \varrho(A)\}$ A)True B)False	B
100	True or False $\varrho(A B) \geq \max \{\varrho(A), \varrho(A)\}$ A)True B)False	B

