Arts Commerce and Science college Bodwad, Dist: Jalgaon Department of Chemistry Question Bank 2021-22

Class-S.Y.B.Sc Sem-III

Chemistry -I- Physical and Inorganic chemistry

1. F	For a non-volatile	solute.	colligative	properties	are measured or	n:
------	--------------------	---------	-------------	------------	-----------------	----

- a) The solvent
- b) The solute
- c) Both the solvent and solute

2. The freezing point depression is defined as:

- A. Tf-Tfo
- B. Tf + Tfo
- C. Tfo Tf
- D. Tfo \times T

3. The boiling point elevation is defined as:

- a. Tb Tbo
- b. Tb + Tbo
- c. Tbo Tb
- d. $Tbo \times Tb$

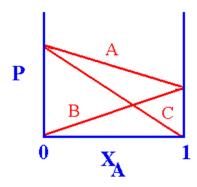
4. What is a substance that is dissolved in another substance?

- a) solution
- b) solute
- c) solvent
- d) compound

5. What is a solvent?

- a) The substance that does the dissolving in a other substance
- b) The substance that is being dissolved in a solution.
- c) The mixing of different substances.
- d) The process in which neutral molecules loose or gain electrons

6. What happens to vapor pressure when you add a solute to a solution?

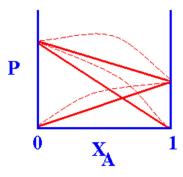

- a) It lowers the vapor pressure.
- b) It has no effect.
- c) It raises the vapor pressure.
- d) It causes the reaction to reach equilibrium.

7. What is osmotic pressure?

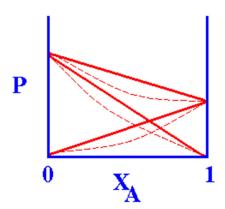
- a) It is the minimum pressure that must be applied to a solution to stop osmosis from happening.
- b) It is the maximum pressure that must be applied to a solution to stop osmosis from happening.
- c) It is the maximum pressure of the vapor over a liquid at equilibrium.

- d) It is the minimum pressure of the vapor over a liquid at equilibrium.
- 8. PA and PB are the vapour pressure of pure liquid components, A and B, respectively of an ideal binary solution. If XA and XB represents the mole fraction of component A and B, the total pressure of the solution will be
 - a) $P_B + X_A (P_B P_A)$
 - b) $P_B + X_B (P_A P_B)$
 - c) $P_A + X_B (P_B P_A)$
 - d) $P_A + X_A (P_A P_B)$
- 9. A solution of two liquids boils at a temperature more than the boiling point of either of them. Hence, the binary solution shows
 - a) Azeotrope with maximum boiling point
 - b) Azeotrope with minimum boiling point
 - c) No change
 - d) Obeys Raoult's law
- 10. Which of the following statements is false?
 - a) Units of atmospheric pressure and osmotic pressure are the same.
 - b) In reverse osmosis, solvent molecules move through a semipermeable membrane from a region of lower concentration of solute to a region of higher concentration.
 - c) The value of molal depression constant depends on nature of solvent.
 - d) Relative lowering of vapour pressure, is a dimensionless quantity
- 11. If two liquids A and B form minimum boiling azeotrope at some specific composition then.
 - a) A–B interactions are stronger than those between A–A or B–B.
 - b) Vapour pressure of solution increases because more number of molecules of liquids A and B can escape from the solution.
 - c) Vapour pressure of solution decreases because less number of molecules of only one of the liquids escape from the solution.
 - d) A-B interactions are weaker than those between A-A or B-B.
- 12. The vapour pressure of a solution containing a non-volatile solute is directly proportional to the
 - a) molality of the solvent.
 - b) osmotic pressure of the solute.
 - c) molarity of the solvent.
 - d) mole fraction of solvent.
 - e) mole fraction of solute
- 13. A solution made by dissolving 9.81 g of a non-volatile nonelectrolyte in 90.0 g of water boiled at 100.37 $^{\circ}$ C at 760 mm Hg. What is the approximate molecular weight of the substance? (For water, $K_b = 0.51$ $^{\circ}$ C/m)
 - a) 240 g/mol

- b) 150 g/mol
- c) 79 g/mol
- d) 61 g/mol
- e) 34 g/mol
- 14. What is the freezing point of an aqueous 1.00 m NaCl solution? ($K_f = 1.86$ °C/m) (Assume complete dissociation of the salt.)
 - a) -1.86 °C
 - b) +1.86 °C
 - c) -3.72 °C
 - d) -0.93 °C
 - e) 0.0 °C
- 15. Colligative properties depend upon:
 - a) The type of solute particles
 - b) The number of solute particles
 - c) Both the type and number of solute particles
- 16. A semipermeable membrane allows:
- a. Only solute through
- b. Only solvent through
- c. Both solute and solvent through
- 17. The graph below plots the vapor pressure of two volatile liquids A and B that form an ideal solution



- a. Line "A" represents:
- a. Partial vapor pressure PA
- b. Partial vapor pressure PB
- c. Total vapor pressure P


- b. Line "B" represents:
- a. Partial vapor pressure PA
- b. Partial vapor pressure PB
- c. Total vapor pressure P

- c. Line "C" represents:
 - a._Partial vapor pressure PA
- b. Partial vapor pressure PB
- c. Total vapor pressure P

18. The graph below contains dashed lines representing the measured vapor pressure, and solid lines representing the ideal vapor pressure for a mixture of volatile liquids A and B. The A-B intermolecular forces are:

- a. More attractive than A-A or B-B forces
- b. Similar to A-A or B-B forces
- c. More repulsive than A-A or B-B forces
- 20. The graph below contains dashed lines representing the measured vapor pressure, and solid lines representing the ideal vapor pressure for a mixture of volatile liquids A and B. The A-B intermolecular forces are:

- a. More attractive than A-A or B-B forces
- b. Similar to A-A or B-B forces
- c. More repulsive than A-A or B-B forces
- 21. Which of the following is the best description of a semipermeable membrane in the context of osmosis?
 - a) A membrane that allows neither solute nor solvent particles to pass through it.
 - b) A membrane that allows solute particles, but not solvent particles, to pass through it.
 - c) A membrane that allows solvent particles, but not solute particles, to pass through it.
 - d) A membrane that allows both solute and solvent particles to pass through it.
- 22. State the Van't Hoff factor (i) for a dilute aqueous solution of the strong electrolyte barium hydroxide, Ba(OH)2

	a) 0	b) 1	c) 2	d) 3
23. V	Which of the	e following is a	colligative pr	operty
	a) Osmo	otic pressure		
	b) Boilir	ng point		
	c) Vapor	ur pressure		

24. The colligative properties of a solution depend on

- a) Nature of solute particles present in it
- b) Nature of solvent used

d) Freezing point

- c) Number of solute particles present in it
- d) Number of moles of solvent only

25. Which of the following is not a colligative property

- a) Osmotic pressure
- b) Elevation in B.P.
- c) Vapour pressure
- d) Depression in freezing point

26. Colligative properties of a solution depends upon

- a) Nature of both solvent and solute
- b) The relative number of solute and solvent particles
- c) Nature of solute only
- d) Nature of solvent only

27. Colligative properties are used for the determination of

- a) Molar Mass
- b) Equivalent weight
- c) Arrangement of molecules
- d) Melting point and boiling point
- e) Both A and B

28. Molarity of a solution is expressed as:

- a) the number of moles of a solute present in one litre of the solution.
- b) the number of moles of a solute present in 1000 gm of the solvent.
- c) the number of gram equivalent of solute present in one litre of solution.
- d) the ratio of the number of moles of solute to the total number of moles of solute

29. of the following characteristics is not possessed by an ideal solution:

- a) obeys Raoult's law.
- b) volume change on mixing is not equal to zero.
- c) there should be no chemical reaction between solute and solvent.
- d) only very dilute solutions behave as ideal solutions.

30. The phenomenon of lowering of vapour pressure is defined as:

- a) decrease in vapour pressure of a solvent on addition of a volatile non electrolyte solute in it.
- b) decrease in vapour pressure of a solvent on addition of a non-volatile non electrolyte solute in it.
- c) decrease in vapour pressure of a solvent on addition of a volatile electrolyte solute in it.
- d) decrease in vapour pressure of a solvent on addition of a non-volatile solute in it.

31. The value of Ebullioscopic constant or boiling point elevation constant depends on:

- a) amount of solute.
- b) nature of solute.
- c) amount of solvent.
- d) nature of solvent.

32. The unit of Cryoscopic constant is:

- a) kelvin kg mol-1
- b) kelvin kg-1 mol-1
- c) kelvin kg mol+1
- d) kelvin kg+1 mol+1

33. Vapour pressure decreases with:

- a) Increase in concentration of the solution.
- b) decrease in solute particles in the solution.
- c) decrease in boiling point.
- d) increase in freezing point.

34. Positive deviation from Raoult's law is observed when:

- a. inter molecular forces of attraction between the two liquids is greater than that between individual liquids.
- b. Inter molecular forces of attraction between the two liquids is smaller than that between individual liquids.
- c. Force of attraction between two liquids is greater than that between individual liquids.
- d. force of attraction between two liquids is smaller than that between individual liquid.

35. Addition of non-volatile solute in water results in:

- a) an increase in melting point of the liquid.
- b) a decrease in the boiling point of the liquid.
- c) a decrease in the vapour pressure of the liquid.
- d) no change in the boiling point of the liquid.

36. Which of the following pair of liquids are immiscible?

- a) Acetone + water.
- b) Benzene + water.
- c) Ethanol + water.
- d) Acetic acid + water.

37. Osmotic pressure of a solution is:

a) Inversely proportional to its absolute temperature.

b) Inversely proportional to its centigrade temperature.
c) Directly proportional to its centigrade temperature.
d) Directly proportional to its absolute temperature.
3. If the solvent boils at a temperature T1 and the solution at a temperature T2, then the
evation of boiling point is given by:
a) $T_1 + T_2$
b) $T_1 - T_2$.
c) $T_2 - T_1$.
d) None of the above.
9. The ratio of elevation in B.P to molality of solution is known as:
a) Molar elevation constant.
b) Mole elevation constant.
c) Normal elevation constant.
d) Molal elevation constant.
wo solutions C and D are separated by a semi-permeable membrane. If liquid flows
rom D to C then.
a) Both have same concentration.
b) D is less concentrated than C.
c) D is more concentrated than C.
d) None of these.
nit of molarity is:
a) Kg / litre.
b) mol / litre.
c) gm / litre.
d) none of these.
elative lowering of vapour pressure is a colligative property because
It depends on the concentration of a non electrolyte solute in solution and does not depend on the nature of the solute molecules.
It depends on number of particles of electrolyte solute in solution and does not depend
on the nature of the solute particles.
It depends on the concentration of a non electrolyte solute in solution as well as on the
nature of the solute molecules.
It depends on the concentration of an electrolyte or nonelectrolyte solute in solution as well
as on the nature of solute molecules.
Colligative properties are observed when
a non volatile solid is dissolved in a volatile liquid.
A
a non volatile liquid is dissolved in another volatile liquid.
a non volatile liquid is dissolved in another volatile liquid. a gas is dissolved in non volatile liquid.

44. Which of the following units is useful in relating concentration of solution with its vapour pressure?
a) mole fraction
b) parts per million
c) mass percentage
d) molality
45. The unit of ebullioscopic constant is
a) K/kg mol-1 or K (molality)-1
b) mol kg K-1 or K-1 (molality)
c) kg mol-1 K-1 or K-1(molality)-1
d) K mol kg-1 or K (molality)
46. Van't Hoff factor (i)is given by the expression
a) i = Normal molar mass / Abnormal molar mass
b) i = Abnormal molar mass / Normal molar mass
c) i = Observed colligative property / Calculated colligative property
d) i = Calculated colligative property / Observed colligative property
 47. Saturated solution is a) Solution having same osmotic pressure at a given temperature as that of given solution. b) A solution which contains maximum amount of solute that can be dissolved in a given amount of solvent at a given temperature c) Solution with two components d) solution whose osmotic pressure is less than that of another 48. Soda water is a) A solution of gas in solid b) A solution of gas in liquid d) A solution of liquid in solid 49. the condition for ideal equation a) Δmix H = zero b) Δmix V = zero c) obeys raoults law
d) all of the above
 50. Sugar solution is a) A solution of solid in liquid b) A solution of liquid in solid c) A solution of solid in solid d) A solution of gas in gas
 51. Equation for osmotic pressure is a) ΔTf = Kfm b) Π = CRT c) P = X1P1 + X2P2 d) P = KH.x

e)	$\Delta Tb = Kb$ m		
52. Ea	juation for depression in f	reezing point i	is
-	$\Delta Tf = Kf. m$	pome s	
-	$\Pi = CRT$		
,	P = X1P1 + X2P2		
•	P = KH. x		
,	$\Delta Tb = Kb$. m		
53. E	quation for elevation in bo	iling point is-	
a)	$\Delta Tf = Kf. m$		
b)	$\Pi = CRT$		
,	P = X1P1 + X2P2		
,	P = KH. xs		
e)	$\Delta Tb = Kb. M$		
54. M a	atch the terms given in Co	lumn I with e	xpressions given in Column II.
	Column I		Column II
1.	Mass percentage	(a)	Number of moles of the solute component Volume of solution in litres
2.	Volume percentage	(b)	Number of moles of a component Total number of moles of all the components
3.	Mole fraction	(c)	Volume of the solute component in solution x 10 Total volume of solution
4.	Molality	(d)	Mass of the solute component in solution x 100 Total mass of the solution
5.	Molarity	(e)	Number of moles of the solute components Mass of solvent in kilograms
a)	1-d, 2-c, 3-b, 4-e, 5-a		
	1-a, 2-c, 3-b, 4-e, 5-d		
	1-b, 2-c, 3-d, 4-e, 5-a		
d)	1-e, 2-c, 3-b, 4-d, 5-a		
	eotrope is	•	
a)	At a particular conc. the temp.	mixture of tw	o or more than two components boil at constar
	A mixture of two partially	•	
	A mixture which can be se	parated by dist	tillation.
d)	A type-I solution		
	ne solubility of a gas in wat	er depends or	1
`	Nature of the gas		
	'l'amana amatazara		
b)	Temperature Pressure of the gas		
b) c)	Temperature Pressure of the gas All of the above		

) / . 1 11	(a)	0.6	(b)	NaCl in 100 ml solution is 0.06
	(c)	0.006		
8. Th	e sum	of the mole	e fraction o	of the components of a solution is
	(<i>a</i>) 0		(b) 1	
	(c) 2		(<i>d</i>) 4	
				system
				n temperature (CST)
		mum Critica Minimum a		um Critical solution temperature
		out CST	na waxiin	um Critical solution temperature
50. A 1	real so	olution is th	at which o	beys
		lt's law		·
		t obeys rao		
	-	s henry's la		
d)	Dono	ot obeys hem	rys law	
	rmali Mole		ion of nun	nber of weight in 1 litres of solvents.
	Mole			
		valent		
		ula weight		
		fraction		
			which V.I	Pf liquids is equal to atmospheric pressure is
		ng point		
		ng point		
	Freez	ring point on		
63 Uni	it of m	ole fraction	ı is	
	Mol/		1 13	
	Mol/l			
	Mol/I			
d)	Dime	ensionless		
				ts system
_				temperature (CST)
		mum Critica		
		out CST	and Maxir	mum Critical solution temperature
65. M o	olarity	is a solutio	on of numb	per of of solute in 1 litres of solvents.
	Mole			
,	Mole			
	Equiv			
		ula weight		
e)	Mole	fraction		
66. Tr	iethyl	amine- wate	er system o	exhibits system
a)	Maxi	mum Critica	al solution	temperature (CST)

	Minimum Critical solution temperature
	Both Minimum and Maximum Critical solution temperature
d)	Without CST
67 Ur	nit of molality is
	Mol/ lit
,	Mol/kg
	Mol/lit ²
,	Dimensionless
68 In	fractionating column distillation is carried out by
	Discontinuous manner
	Continuous manner
,	Batch wise
	None of the above
69. Th	ne solubility of a solid in water depends on
	Nature of the solid
	Temperature
	Pressure of the solid
,	All of the above
70. Th	ne methods by which osmotic pressure is measured
	Landsberger method
	Beckmann's method
c)	Berkley and Hertley method
	Vant'hoff method
71. Th	ne methods by which elevation in boiling point is measured
a)	Landsberger method
b)	Beckmann's method
c)	Berkley and Hertley method
d)	Vant'hoff method
72. Th	ne methods by which depression in Freezing point is measured
a)	Landsberger method
b)	Beckmann's method
	Berkley and Hertley method
d)	Vant'hoff method
	rite the electronic configuration of chromium (Atomic number; $Cr = 24$).
a)	$[Ar], 3d^5, 4s^1$
b)	$[Ar]$, $3d^4$, $4s^1$
	$[Ar]$, $3d^5$, $4s^2$
d)	none of the above
	rite the electronic configuration of copper (Atomic number, Cu=29).
a)	$[Ar], 3d^9, 4s^2$
b)	[Ar], $3d^{10}$, $4s^1$ [Ar], $3d^{10}$, $4s^2$
d)	None of the above
75. Gi	ve the general electronic configuration of transition metals.
a)	[Ar], $3d^{1-10}$, $4s^{1or2}$ [Ar], $3d^{0-10}$, $4s^{1or2}$
b)	$[Ar]$, $3d^{-10}$, $4s^{-10}$

d)	[Ar], 3d ¹⁻¹⁰ None of the			
76. Wr	ite the elec	tronic configurati	on of Manganese	(Atomic number, Mn = 25).
a)	$[Ar], 3d^5, 4$	$4s^2$		
b)	$[Ar]$, $3d^6$, 4	s^1		
	$[Ar]$, $3d^5$, 4			
d)	None of the	e above		
77. 'd'	block elem	ent have ability to	form complexes	because they have
a)	Variable ox	idation no.	_	
		rdination no.		
c)	Small size			
d)	All the abo	ove three		
		owing which is co	-ordination comp	ounds?
	FeSO ₄			
	K ₄ [Fe (CN	√) ₆]		
,	KCN			
d)	Fe $(CN)_6$			
		in colour while Z		
		O		rbital is completely filled
		ed d orbital & in Zr	_	letely filled
		er & Zn is larger in	1 SIZE	
a)	Other than	above		
		owing elements w	hich compounds	are colourless complexes?
	Fe ⁺² Mn ⁺²			
	$\mathbf{Z}\mathbf{n}^{+2}$			
	Ni ⁺²			
81. Wh		f magnetic mome		
	a) Cm	b) BM	c) MM	d) KM
82 . W ł	ıy d- block	elements show va	riable oxidation s	tates?
a)	Energy diff	Gerence between (n-	-1) d and ns orbita	ls are very small
	Electrons fi	rom 4s & 3d energ	y levels can be use	d for bonding
b)		re present in transi	ti	
	Elements a	re bresenn m mmms	non series	
c)	Elements as Both a & b	*	uon series	
c) d) 83. Wh	Both a & b	nly formula?	uon series	
c) d) 83. Wh a)	Both a & the spin of $\mu = \sqrt{n}$ (n +	nly formula?	uon series	
c) d) 83. Wh a) b)	Both a & h nat is spin o $\mu = \sqrt{n (n + \mu)}$ $\mu = \sqrt{n (n + \mu)}$	nly formula? 2) + 1)	uon series	
c) d) 83. Wh a) b) c)	Both a & h nat is spin o $\mu = \sqrt{n}$ (n + $\mu = \sqrt{n}$ (n · $\mu = \sqrt{n}$ (n x	nly formula? (2) (+ 1) (2)	uon series	
c) d) 83. Wh a) b) c)	Both a & h nat is spin o $\mu = \sqrt{n} (n + \mu)$ $\mu = \sqrt{n} (n + \mu)$	nly formula? (2) (+ 1) (2)	uon series	
c) d) 83. Wh a) b) c) d)	Both a & hat is spin of $\mu = \sqrt{n}$ (n + $\mu = \sqrt{n}$ (n x other than a nat is magnetation)	nly formula? (2) (1) (2) (2) (3) (4) (5) (6) (7) (7) (7) (7) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	n ⁺² by spin only f	
c) d) 83. Wh a) b) c) d)	Both a & h nat is spin o $\mu = \sqrt{n}$ (n + $\mu = \sqrt{n}$ (n x other than a	nly formula? (2) (1) (2) (2) (3) (4) (5) (6) (7) (7) (7) (7) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	n ⁺² by spin only f	formula? 1.73
c) d) 83. Wh a) b) c) d) 84. Wh	Both a & hat is spin of $\mu = \sqrt{n}$ (n + $\mu = \sqrt{n}$ (n x other than a a) 5.91	nly formula? (2) (4) (2) (above three) (b) 4.90 (ctic moment of Co	n ⁺² by spin only f c) 3.87 d) 1 r 3 + by spin only f	1.73

	a) Fe	b) Mn	c) Zn	d) Cu	
87. H a	emoglobin	in blood conta	nin	metal	
	a) Mn	b) Fe	c) Zn	d) Cu	
38. W]	hich groups	s of elements a	re called d-blo	ck elements in modern	periodic table?
,	1 to 2				
/	3 to 10 3 to 12				
,	13 to 18				
9 In	modern ne	riodic table b	v which name	d-block elements are kr	10wn?
	_	ropositive elem		u-block elements are ki	lown.
b)	Transition	elements			
		opositive elements	ents		
u)	milei tians	ition elements			
				d-block elements?	
		s fully filled in a sist in the state of the	-		
		fully filled in		tes.	
d)	d-orbital is	fully filled in	only anyone ox	dation state	
)1 W	hich of the	following does	not relevant v	vith transition elements	9
		oints of transition			•
			•	paramagnetic properties	
		tion elements d			
u)	Transmon	elements proce	sses various ox	idation state.	
		owing statemen			
		all transition e on elements are		ramagnetic.	
,		nts of d-block and		ments.	
d)	d-block ele	ements are pres	ent in between	s & p block elements in p	periodic table.
93 . H o	w many d-	electrons are t	here in Fe2+ (Z = 26)	
	(A) 4	(B) 5	(C) 6	D) 3	
94 W	hat is ovida	ation no. of Cr	in K2Cr2O7		
) I. V V	(A) +2	(B) +4	(C) +6	(D) +7	
)5 I	41		1 1 4 .	• •	
	Atomic rad		bserved due to	increase in	
,	Volume of				
,		nuclear charge	;		
d)	Atomic nu	mber			
96. W l	hich block	elements are n	nore electropo	itive in modern periodi	ic table?
	(a) s	(b) p	(c) d	(d) f	
97. Ha	ow manv d-	electrons are t	here in Ti (Z =	: 22)	
	(a) 2	(b) 5	(c) 6	(d) 3	
98. W I	hat is magn	etic moment o	of Sc+2 by snin	only formula?	
	a) 5.91	b) 4.90	c) 3.87	d) 1.73	

a).	Mn^{-3}	r gest radii? b). Fe ⁺³	c). Cr ⁻³	d).Co ⁺³
00. Which	of the follow	ving pair are ch	emical twins.	
a) Mob) Zr at	and W nd Ta			
c) Mo	and Hf			
d) Ru a	nd Os			
			Post of Luc	ale.
			Best of Luc	ek