Arts, Commerce and Science College, Bodwad

Question Bank

Class- S.Y.B.Sc. (CBCS)		Semester- III			
Subject- Zoology-I		Paper Name: Zoo-301 Physiology			
		Unit-1			
1.	is	the largest cell in the ve	ertebrate's body.		
		s b. Skeletal Muscle		d. Nerve Cell	
2.	is th	ne basic unit of nervous	system		
		b. Brain		d. Ganglion	
3.		ne structural and function			
		s b. Skeletal Muscle			
4.	It is estimated that there are				
	a. 10^1 to 10^{10}	b. 10 ¹ to 10 ¹¹	c. 10^1 to 10^{12}	d. 10^1 to 10^{13}	
5.	Due to the absence	ofneuron	lost the power to divid	e.	
		b. Centrosome			
6.	In neuroplasm of cy	yton numerous small ba	sophilic bodies called_	granules.	
		b. Nestal			
7.	A highly branched	dendrite can be send up	tosignals	s to a single	
	interneuron.				
	a. 1000	b. 10000	c. 100000	d. 1000000	
8.	The place of origin	of the axon is like a co	nical projection, knowr	n as axon	
	a. Hook	b. Hillok	c. Hillock	d. None	
9.	Difference in charge in either side of the membrane of a resting neuron is the				
	potential.				
	a. Resting	b. Graded	c. Polarized	d. Repolarized	
10	. During excitation _	is dislodged	d from its binding site a	and the permeability	
	to sodium is increas	sed.			
	a. Potassium	b. Chloride	c. Hydrogen	d. Calcium	
11	. Transmission of the	e impulses along neuror	ns is		
	a. Multidirectiona	l b. Bidirectional	c. Unidirectional	d. Randomly	
12	. In medullated nervo	e fibres, the impulse	from node	to node, it is called	
	salutatory propagat	ion.			
	a. Jumps	b. Spread	c. Increase	d. Amplify	
13	. The sarcomere, wh	ich is the segment betw	een 2 successive	lines.	

c. Z

d. H

a. A

b. I

Unit-2

14.		is a pro	cess of enzymatic con	version of undiffusible	e form of food into
	dif	fusible or simpler f	form for absorption and	d assimilation.	
	a.	Digestion	b. Consumption	c. Conversion	d. Combustion
15.	The	e wall of gastrointe	estinal tract is protected	d by	
			b. Saliva		
16.	The	e space or pouch be	etween the lips and jav	vs is the	
	a.	Cavity	b. Coelom	c. Vestibule	d. Mouth
17.			also called		
	a.	Rivinus	b. Wharton's	c. Parotid	d. None
18.	Bre	eakdown of starch	to glucose is carried or	ut by	
	a.	Gastric juice	b. Saliva	c. Bile	d. Lipase
19.	The	e pH of saliva is _			
	a.	6.8	b. 8.6	c. 7.8	d. 5.6
20.	Ch	ief cells produces t	he enzymes	and renin.	
	a.	Zymase	b. kimase	c. pepsin	d. alkalinase
21.		cells of	gastric gland secrets h	nydrochloric acid.	
	a.	Mucous	b. peptic	c. parietal	d. argentaffin
22.	The	e mixing contraction	ons serve to mix the	with in	testinal secretion.
	a.	Chyme	b. chemicals	c. enzymes	d. dry food
23.			continually produce a		
	a.	Juice	b. bile	c. fluid	d. hormones
24.	Foo	od generally takes	hours to	move through the small	all intestine.
	a.	2-3	b. 3-6	c. 6-8	d. more than 8
25.	The	e has a r	major role in completion	on of the digestive prod	cesses and
	abs	sorption of the fina	l products.		
			b. Stomach		d. Large intestine
26.	In o	digestion lipids are	converted into	and glycerol.	
	a.	Amino acid	b. Fructose	c. Glucose	d. Fatty acid
27.	The	e human body does	s not possess enzymes	necessary for	digestion.
	a.	Cellulose	b. Starch	c. Lactose	d. Sucrose
28.	Lac	ctose is broken dov	wn into glucose and		
	a.	Galactose	b. Fructose	c. Maltose	d. Sucrose
29.	Glı	ucose is synthesize	d from proteins is known	wn as	
	a.	Glucogenesis	b. Glucolysis c. Glucolysis	cogenolysis d. Glu	ıconeogenesis
30.			orbed in the		
			b. ileum		
31.	Dig	gestion of protein i	s initiated in the		
		Mouth		c. Oesophagus	d. Small intestine
32.			gastric enzyme know		
		Pepsinogen		c. Pepsin	
			ne part acts as exocrin		
	a.	Thyroid	b. Liver	c. Pancreatic	d. Thymus

34.	Nearly	_ ml pancreatic juice is s	secreted daily in huma	an beings.	
	a. 100-500		c. 2000-2500		
35.	Trypsin is activ	ated by an intestinal enz	zyme	-	
	a. Lactase	b. Amylase	c. Maltase	d. Enterokinase	
		Un	it- 3		
36.	Moving of air i	n and out of the lungs is	called as		
		b. Ventilation			
37.	Thorasic cavity	is separated from abdor	ninal cavity by		
	_	n b. Ribs	• •		
38.		conditions, the average a			
		b. 12 to 15			
39.	About	ml/100 ml blood of	O2 is carried by haen	noglobin under saturation	
	as oxyhaemogl	obin.			
	a. 19	b. 19.6	c. 19.7	d. 19.8	
40.	Carbon dioxide	e is mainly transported in	the form of		
	a. Carbamino	compound	b. Carbonic acid	d	
	c. Bicarbona	tes	d. None		
41.	•	is the volume inspired ar	nd expired in normal,	quiet breathing.	
	a. Expiratory re	eserve volume	b. Residual volu	ume	
	c. Tidal volum	ie	d. Inspiratory re	eserve volume	
42.	Normal tidal vo	olume is about	ml.		
	a. 50	b. 500	c. 5000	d. 5	
43.	·	is the volume remaining	g in the lungs following	ng maximal expiration.	
	a. Expiratory re	eserve volume	b. Residual vol	lume	
	c. Tidal volume		d. Inspiratory re		
44.	·	is the volume that can b	e expired following e	expiration of a tidal	
	volume during	g maximal expiration.			
	a. Expiratory reserve volume		b. Residual volu	b. Residual volume	
	c. Tidal volume		1	d. Inspiratory reserve volume	
45.	Expiratory rese	erve volume is approximate	ately	ml.	
	a. 12	b. 120	c. 1200	d. 210	
46.	is	s the total volume inspire	ed during maximal ins	spiration.	
	a. Inspiratory c	apacity	b. Functional r	residual capacity	
	c. Vital capacit	•	d. Total lung ca	pacity	
47.		is the sum of all the lung	volumes		
	a. Inspiratory c	apacity	b. Functional re	• •	
	c. Vital capacit	•	d. Total lung c	apacity	
48.		city is about			
	a. 2400	b. 240	c. 24	d. 4	
49.		acity (IC) is about			
	a. 6	b. 36	c. 360	d. 3600	

50.	is not measured by spirometry, but with a helium dilution method or a body			
	plethysmograph.			
	a. Expiratory reserve volume b. Residual vo		b. Residual volume	
	c. Tidal volume		d. Inspiratory reserve	volume
51.	An instrument called a	a is used to r	neasure the volume of a	air that moves into
	and out of the lungs.			
	a. Spirometer	b. Speedometer	c. Spirometry	d. Spectrometer
52.	is the vol	lume that can be inspire	ed above tidal volume o	luring maximal
	inspiration.			
	a. Expiratory reserve	volume	b. Residual volume	
	c. Tidal volume		d. Inspiratory reserv	ve volume
53	. Inspiratory reserve vo	olume is approximately	ml.	
	a. 3100	b. 3000	c. 2100	d. 2000
54	. Residual volume is ap	oproximately	ml.	
	a. 12	b. 120	c. 1200	d. 210
55	is the to	otal volume that can ex	pire following maxima	l inspiration.
	a. Inspiratory capacit	ty	b. Functional residual capacity	
	c. Vital capacity		d. Total lung capacity	•
		Unit-4		
56	=	nd glomerulus together	constitutes	
	a. Nothing		b. Nephron	
	c. Malphigian corp	uscles	d. Nephric capsule	
57	. The entire volume of	blood in the body is fil	tered by the kidneys	times a day.
	a. 40	b. 50	•••	d. 70
58	. In mammalian kidney	Loop of Henle's prese	ent in	
			c. Medulla	
59	. The vessel leading ble	ood (containing nitroge	enous waste) into the Be	owman's capsule is
	known as			
	a. Afferent arteriole	e b. Efferent arteriole	c. Renal artery	d. Renal vein
60	. In mammals the main	excretory organ is		
	a. Heart	b. Brain	c. Kidney	d. None
61	. Excretion removes	waste from the	he body.	
	a. Carbohydrates	b. Nitrogenous	c. Fat	d. None
62	. Glomerular membran	e acts as		
	a. Biological filter	b. Chemical filter	c. Physical filter	d. None
63	. Reabsorption in kidne	ey tubules is facilitated	by	
	a. ACTH	b. ADH	c. Androgen	d. Oestrogen
64	. Daily r	nl of glomerular filtrate	e is produced by human	kidneys.
	a. 170 lit.		c. 190 lit.	d. 200 lit.
65	. Kidney perform the f	unction of		
	a. Respiration	b. filtration	c. Thermoregulation	d. None

Unit-5

66. Human erythrocyte is	about	in diameter.				
a. 10 u	b. 7.5 u	c. 2.3 u	d. 15 u			
67. Formation of erythroc	67. Formation of erythrocytes is called					
a. Erythropoiesis	b. Leucopoiesis	c. Erythropenia	d. Leucocytosis			
68. The life of the erythro	cytes in mammali	an blood is about	_ days			
a. 120	b. 150	c. 190	d. 180			
69. Leucocytes are produc	ced in					
a. Bone marrow		b. Lymph nodules				
c. Preyer's patches an	d tonsils	d. All of these				
70. Which blood cell play	important role in	immune response by produ	icing antibodies.			
a. Erythrocytes	b. Leucocytes	c. Thrombocytes	d. None			
71. Blood plasma contain	8	anticoagulant.				
a. Haemocyanin	b. Haemoglobin	c. Haemocyte	d. Heparin			
72. The platelets are	blood co	orpuscles.				
a. Red	b. Yellow	c. Colourless	d. Purple			
73 is a comple	x physiological pr	rocess involving cells in sol	uble and insoluble			
Proteins.						
a. Hemostasis	b. Hemolysis	c. Hemophilia	d. Haemoglobin			
74. Mammalian heart con	tains cha	ambers.				
a. 2	b. 3	c. 4	d. 5			
75. Ventricular systole co	nsumes	_ seconds, ventricular dias	tole that lasts for 0.5			
second.						
a. 0.1	b. 0.2	c. 0.3	d. 0.4			
76. AV valve on the right	side of the heart i	s called				
a. Unicupsid Valve	b. Bicupsid Valv	re c. Tricupsid Valve	d. None			
77. AV valve on the left s	ide of the heart is	called				
a. Unicupsid Valve	b. Bicupsid Val	ve c. Tricupsid Valve	d. None			
78. Pulmonary veins has _	valve	•				
a. Unicupsid Valve	b. Bicupsid Valv	e c. Tricupsid Valve	d. None			
79. Which arteries supply	oxygenated blood	d to the heart				
a. Subclavian	b. Pulmonary	c. Systemic	d. Coronary			
80. Which veins supply do	eoxygenated blood	d to the heart				
a. Subclavian	b. Pulmonary	c. Systemic	d. Coronary			
81. Pacemaker is located a	at which chamber	of heart.				
a. Rt. Auricle	b. Rt. Ventricle	c. Lt. Auricle	d. Lt. Ventricle			
82. Contraction of heart is	called					
a. Systole	b. Diastole	c. Stroke	d. None			
83. Relaxation of Auricle is called						
a. Auricular Systole	b. Auricular Dia	astole c. Pause	d. None			

Unit-6

84.	The thick connective	tissue layer which cov	ers testis is known as	
	a. tunica vasculosa	b. Tunica albuginea	c. Tunica intima	d. None
85.	In seminiferous tubul	es, seminiferous epithe	elium surrounded by	
	a. tunica albuginea	b. lamina propria	c. tunica lamina	d. tunica propria
86.	Sertoli cells are of	type.		
	a. cuboidal	b. stratified	c. columnar	d. none of these
87.	The process of format	tion of sperm is known	1 as	
	a. spermiolysis	b. Oogenesis	c. Spermiogenesis	d.Spermatogenesis
88.	Differentiation of spe	rmatids into the sperm	is known as	
	a. spermiolysis	b. Oogenesis	c. Spermiogenesis	d.Spermatogenesis
89.	Corpus luteum secrete	es the hormone		
	a. Testosterone	b. Oestrogen	c. Progesterone	d. Androgen
90.	Insulin is secreted by	cells of pane	creas.	
	a. Pancreatic	b. islets of Langerha	ans c. duct	d. none of these
91.	Chromaffin cells of a	drenal medulla secrete	hormone.	
	a. Testosterone	b. Aldosterone	c. Androgen	d. Epinephrine
92.	In endocrine system	Gland is know	n as master gland.	
	a. Pituitary	b. Hypothalamus	c. Thyroid	d. Adrenal
93.	Alpha cells of pancrea	as secrete the hormone	2	
		b. Glucagon	c. Testosterone	d. Thyroxin.
94.	is essential	for spermiogenesis.		
	a. FSH	b. LH	c. TSH	d. Oestrogen
95.	is essential	for controlling the bac	ckground metabolic fu	nctions of testes.
	a. FSH	b. LH	c. TSH	d. GH
96.	joins the two la	teral lobes of thyroid g	gland.	
		b. Istomath		d.None
97.	Hormone secreted by	y posterior pituitary or	neurohypophysis is	
	a. Prolactin	b. Oxytocin	c. ACTH	d. TSH
98.	By about Day to	he Graafian follicle re	aches to its maximum	size.
	a. 10th	b. 12th	c. 14th	d. 16 th
99.	The menstrual cycle i	s ofday cycle.		
	a. 26	b. 28	c. 30	d. 32
100	. Vitellogenesis involv	es the synthesis of	In the ovum.	
	a. Albumen	b. Yolk	c. Both	d. None of these
