The Bodwad Sarvajanik Co-Op, Education Society Ltd., Bodwad Arts, Commerce and Science College Bodwad. Question Bank (MCQ)

S.Y.BSc :2021-22

Zoology Paper II: Biochemistry

ZOO 302 Biochemistry					
Q.No.	Multiple Choice Question				
1.	Gluconeogenesis takes place mostly in				
	A) Heart B) Kidney C) Stomach D) Liver	D			
2	The general test for detection of carbohydrates is	В			
Ζ.	A) Iodine test B) Molisch test C) Barfoed test D) Osazone test				
2	is a metabolic process responsible for Metabolite?	D			
5.	A) Glycolysis B) Gluconeogenesis C Glycolytic D) Proteolysis	В			
4	Conversion of Alanine to carbohydrate to known	П			
4.	A) Glycogenesis B) Gluconeogenesis C) Gluconeogenolysis D) Photosynthesis	D			
5	Gluconeogenesis is exactly opposite process of	•			
5.	A) Glycolysis B) Lyponeogenesis C) Glucolytic D) Proteolysis	A			
6	Kreb Cycle is also called as cycle	C			
0.	A) BCA B) AKA C) TCA D) TCB				
7	Glycolysis takes place inorganism.	C			
/.	A) Aerobic B) Anaerobic C) Both(A) and (B) D) None				
8	is a metabolic process responsible for glucose degradation.	А			
0.	A) Glycolysis B) Gluconeogenesis C) Glucolytic D) Proteolysis				
0	Pentose production is increased in	٨			
9.	A) HMP shunt B) Uromic acid pathway C) EM pathway D) TCA cycle	A			
10	In glycolysis glucose is converted into	D			
10.	A) Fructose B) Pyruvate C) Carbohydrate D) Pyruvic acid	Б			
	The following is an enzyme required for glycolysis:				
11.	A) Pyruvate kinaseB) Pyruvate carboxylase	А			
	C) Glucose-6-phosphatase D) Glycerokinase				
	Our body can get pentoses from				
12.	A) Glycolytic pathway B) Uromic acid pathway	D			
	C) TCA cycle D) HMP shunt				

13.	Conversion of glucose to glucose 6- phosphate in liver is byA) Hexokinase onlyB) Glucokinase onlyC) Hexokinase and glucokinaseD) Glucose-6-phosphate dehydrogenase						
14.	Which of the following is not an enzyme involved in glycolysis?A) EuolaseB) AldoloseC) HexokinaseD) Glucose oxidase						
15.	The following is an enzyme required for glycolysis:A) Pyruvate kinaseB) Pyruvate carboxylaseC) Glucose-6-phosphatoseD) Glycerokinase						
16.	The tissues with the highest glycogen content areA) Muscle and kidneyB) Kidney and LiverC) Liver and muscleD) Brain and Liver	С					
17.	Glucose absorption may be decreased inA) OedemaB) NephritisC) RicketsD) Osteomalitis						
18.	Glycogen synthetase activity is depressed byA) GlucoseB) InsulinC) Cyclic AMPD) Fructokinase						
19.	The branching enzyme acts on the glycogen when the glycogen chain has beenlengthened to between glucose units:A) 1 and 6B) 2 and 7C) 3 and 9D) 6 and 11						
20.	Cyclic AMP is formed from ATP by the enzyme adenylate cyclase which isactivated by the hormone:A) InsulinB) EpinephrineC) TestosteroneD) Progesterone	В					
21.	Hexokinase has a high affinity for glucose thanD) All of the aboveA) FructokinaseB) GalactokinaseC) GlucokinaseD) All of the above	С					
22.	Dihydroxyacetone phosphate and glyceraldehyde 3-phosphate are intercovertedbyA) Triose isomeraseB) Phosphotriose isomeraseC) Diphosphotriose somerase D) Dihydroxyacetone phosphorylase	В					
23.	Citrate is converted to isocitrate by aconitase which containsA) Ca ⁺⁺ B) Fe ⁺⁺ C) Zn ⁺⁺ D) Mg ⁺⁺	В					

24.	The reaction succinyl COA to succinate A) CDP B) ADP C) GDP D)NADP+				
	The carrier of the citric acid cycle is				
25.	A) Succinate B) Fumarate	D			
	C) Malate D) Oxaloacetate				
	Gluconeogenesis is increased in the following condition:				
26.	A) Diabetes insipidus B) Diabetes Mellitus				
	C) Hypothyroidism D) Liver diseases				
	The number of molecules of the ATP produced by the oxidation of acetyl CoA				
27.	in TCA cycle is	D			
	A) 6 B) 8 C) 10 D) 12				
	Kreb cycle takes place in				
28.	A) Nucleus B) Ribosome	C			
	C) Mitochondria D) Golgi bodies				
20	Kreb cycle Converts Pyruvate to energy in the form of				
29.	A) ATP B) ADP C) Pi D) Glucose	A			
30	The cellular energy currency is	В			
50.	A) Dollar B) ATP C) Cells D) ADP	D			
31	Dietary fats after absorption appear in the circulation as				
51.	A) HDL B) VLDL C) LDL D) Chylomicron				
	Free fatty acids are transported in the blood				
32.	A) Combined with albumin B) Combined with fatty acid binding protein				
	C) Combined with β – ibuprotein D) Ibutein free salts				
33.	Long chain fatty acids are first activated to CoA in	A			
	A) CytosolB) MicrosomesC) NucleusD) Mitochondria				
	The enzyme acyl-CoA synthase catalyses the conversion of a fatty acid of an				
34.	active fatty acid in the presence of	C			
	A) AMP B) ADP C) ATP D) GTP				
35.	The enzymes of β -oxidation are found in	A			
55.	A) Mitochondria B) Cytosol C) Golgi apparatus D) Nucleus				

36.	Long chain fatty acids penetrate to inner mitochondrial membraneA) FattyB Acetyl CoA derivative								
	C) As carnitine derivative D) Requiring Na dependent carrier	C							
	Atherosclerosis and coronary heart diseases are associated with the diet:								
37.	A) High in total fat and saturated fat B) Low in protein								
	C) High in protein D) High in carbohydrate								
	Cerebrovasular disease and hypertension is associated with								
38.	B.A) High calcium intakeB) High salt intakeC) Low calcium intakeD) Low salt intake								
20	β-oxidation is breakdown ofAcetyl CoA	- F							
39.	A) Glucose B) Proteins C) Enzymes D) Fatty acids								
10	β-oxidation is takes place in								
40.	A) Mitochondria B) Cytosol C) Golgi apparatus D) Nucleus	Α							
	β-oxidation isprocess.								
41.	A) streakly aerobic B) streakly anaerobic								
	C) anaerobic D) Both A and B								
12	Fatty acid oxidation does not happens in	C							
τ2.	A) Heart B) Liver C) Brain D) Kidney	C							
/3	Lipogenesis is the process of production of	Δ							
чэ.	A) Lipid B) Carbohydrate C) Protein D) Enzymes	Λ							
	The major storage form of lipids is								
44.	A) Esterified cholesterol B) Glycerophospholipids								
	C) Triglycerides D) Sphinolipids								
45	β-Oxidation of fatty acid requires all the following coenzymes except	П							
	A) CoA B) FAD C) NAD D) NADP								
	Which of the following can be oxidized by β-oxidation pathway?								
46.	A) Saturated fatty acids B) Monosaturated fatty acids	D							
	C) Polyunsaturated fatty acids D) All of these								
47	Ketone bodies are synthesized in	R							
4/.	A) Adipose tissue B) Liver C) Muscles D) Brain								

48.	Niemann-Pick disease results from deficiencies from.A) CeramidaseB) SpingnomylinaseC) Arylsulphatase AD) Hexosaminidase A						
49.	Lipids are stored in the body mainly in the form of A) Phospholipids B) Glycolipids C) Triglyagridge D) Fatty agids						
	Fat depots are located in						
50.	A) Intermuscular connective tissueB) MesentaryC) OmentumD) All of these	D					
51.	Breakdown ofis lipolysis.A) LipidB) CarbohydrateC) ProteinD) Enzymes	А					
	All proteins contain the						
52.	A) Same 20 amino acidsB) Different amino acids	А					
	C) 300 Amino acids occurring in nature D) Only a few amino acids						
	Proteins contain						
53.	A) Only L- α - amino acidsB) Only D-amino acids	Α					
	C) DL-Amino acids D) Both (A) and (B)						
	The main sites for oxidative deamination are						
54.	A) Liver and kidneyB) Skin and pancreas	Α					
	C) Intestine and mammary gland D) Lung and spleen						
	A positive nitrogen balance occurs						
55.	A) In growing infant B) Following surgery	Α					
	C) In advanced cancer D) Kwashiokar						
56.	The main site of urea synthesis in mammals	А					
	A) LiverB) SkinC) IntestineD) Kidney						
	The enzymes of urea synthesis are found in						
57.	A) Mitochondria only B) Cytosol only	C					
	C) Both mitochondria and cytosol D) Nucleus						
58.	The number of ATP required for urea synthesis is	D					
	A) 0 B) 1 C) 2 D) 3						

50	Most of the ammonia released from L-amino acid reflects the coupled action of transaminase and				
59.	A) L-glutamate dehydrogenase B) L-amino acid oxidase	A			
	C) Histidase D) Serine dehydratase				
_	In urea synthesis, the amino acid functioning solely as an enzyme activator:				
60.	A) N-acetyl glutamate B) Ornithine				
	C) Citrulline D) Arginine				
	Control of urea cycle involves the enzyme:				
61.	A) Carbamoyi phosphaste synthatease B) Orritine transcarbamoyiase	А			
	C) Argininosuccinase D) Argenase				
	Transfer of the carbamoyl moiety of carbamoyl phosphate to ornithine is				
(\mathbf{c})	catalysed by a liver mitochondrial enzyme:				
62.	A) Carbamoyl phosphate synthetase B) Ornithine transcarbamoylase	В			
	C) N-acetyl glutamate synthetase D) N-acetyl glutamate hydrolase				
(2)	A compound serving a link between citric acid cycle and urea cycle is				
63.	A) Malate B) Citrate C) Succinate D) Fumarate	D			
64	Small amount of urinary oxalates is contributed by the amino acid:	A			
04.	A) Glycine B) Tyrosine C) Alanine D) Serine				
65	The amino acid which detoxicated benzoic acid to form hippuric acid is	А			
03.	A) Glycine B) Alanine C) Serine D) Glutamic acid				
_	Non-Protein amino acids are				
66.	A) Ornithine B) β -alanine A				
	C) γ-amino butyric acid D) All of thease				
67	The amino acid that undergoes oxidative deamination at significant rate is				
07.	A) Alanine B) Aspartate C) Glutamate D) Glutamine				
68	The major site of urea synthesis is	п			
08.	A) Brain B) Kidneys C) Liver D) Muscles	Б			
	The following enzyme of urea cycle is present in cytosol:				
69.	A) Argininosuccinic acid synthetase B) Argininosuccinase	D			
	C) Arginase D) All of these				

	ATP is required in following reactions are of Urea CycleA) Synthesis of carbamyle phosphate and citrulline				
70.	B) Synthesis of citrulline and argininosuccinate				
	C) Synthesis of argininosuccinate and arginine				
	D) Synthesis of carbamoyl phosphate and Argininosuccinate				
71	Daily excretion of nitrogen by an adult man is about	C			
/1.	A) 15–20 mg B) 1.5–2 gm C) 5–10 gm D) 15–20 gm	C			
72	Amino acid synthesis is a process in whichare produced.	А			
, 2.	A) Amino acids B) Protein C. Fat D) Acids	11			
	Transfer of an amino group from amino acid to kito acid is called as				
73.	A) Amination B) Trans amination	В			
	C) Deamination D) Proteolysis				
74	All enzymes are Proteins except	Δ			
/ -1.	A) RNAs B) DNAs C) Chymotrypsin D) Protease	11			
75	The term enzyme is coined by	D			
75.	A) Pasteur B) Buchner C) Urey Miller D) Kuhne				
	The fastest enzyme is				
76.	A) PepsinB) Carbonic unhydrase	В			
	C) DNA gyrase D) DNA polymerase				
	Fat is hydrolyzed by the enzyme known as				
77.	A) Trypsin B) Lipase	В			
	C) pepsin D) Amylase				
	The term apoenzyme is applicable to				
	A) Simple enzyme				
78.	B) Protein part of conjugate enzyme				
	C) Organic cofactor of a conjugate enzyme				
	D) Inorganic cofactor of a conjugate enzyme				
	Coenzymes combines with				
79.	A) Proenzymes B) Holoenzymes	D			
	C) Antienzymes D) Apoenzymes				
80.	Zymogen is	С			

	A) Enzyme poisonB) Enzyme Modulator						
	C) Enzyme precursor D) Enzyme Inhibitor						
	Allosteric enzyme possesses						
	A) Active site and an allosteric site						
81.	B) Active site and two types of allosteric sites						
	C) Active site and three types of allosteric sites						
	D) Three types of allosteric sites						
82.	"Lock and key" theory of enzyme action was proposed by A) Fischer B) Koshland C) Kurhe D Arrinus	А					
02	Trypsin are active in	р					
83.	A) Acidic B) Alkaline C) neutral D) None of these						
	Koshland's theory of enzyme action is known as						
84.	A) Reduced fit theory B) Lock and key theory						
	C) Induced fit theory D) Enzyme coenzyme theory						
	The enzymes involved in feedback inhibition are called						
85.	A) Allosteric enzymes B) Holoenzymes						
	C) Apoenzymes D) Coenzymes						
	Any molecule which acts directly on an enzyme to lower its catalytic rate is						
86.	called						
	A) Regulator B) Repressor C) Inhibitor D) Moderator						
	Enzymes are chemically						
87.	A) Proteins B) Proteins and nucleic acids	С					
	C) Proteins and rarely ribonucleic D) Protein and rarely carbohydrates						
88	Most industrial enzymes are obtained from	B					
00.	A) plants B) microbes C) insects D) animal tissues	D					
	Enzymes, vitamins and hormones can be classified into a single category of						
80	biological chemicals because all of them						
07.	A) aid in regulating metabolism B) are synthesised in organism						
	C) are proteins D) enhance the oxidation metabolism						

90.	A Holoenzyme isA) Functional unitB) Apo enzymeC) CoenzymeD) All of these	D			
91.	Neimann-Pick disease is due to the deficiency of the enzyme:A) HexosaminidaseB) CeramidaseC) A and BD) None				
	Which of the following statement true regarding enzyme inhibition?				
	A) It may be reversible or irreversible				
92.	B) Reversible can be competitive or non-competitive				
	C) both (A) and (B)				
	D) it is always reversible				
	The compound which has the lowest density is				
93.	A) Chylomicron B) β-Lipoprotein	А			
	C) α -Lipoprotein D) pre β -Lipoprotein				
	Non steroidal anti inflammatory drugs, such as aspirin act by inhibiting the				
0.4	activity of the enzyme:				
94.	A) Lipoxygenase B) Cyclooxygenase	В			
	C) Phospholipase A2 D) Lipoprotein lipase				
	From arachidonate, synthesis of prostaglandins is catalyzed by				
95.	A) Cyclooxygenase B) Lipoxygenase	А			
	C) Thromboxane synthetase D) Isomerase				
	Which of the statement is true regarding Km.				
	A) It is the measure of the stability of the Ex complex.				
96.	B) It is the measure of the stability of the affinity of an enzyme for its substrate				
	C) A high Km indicates weak substrate binding				
	D) all of these Gaucher's disease is due to the deficiency of the enzyme:				
07	A a Eucosidese B B Collectosidese	C			
97.	C) & Chaosidase D) Schingsonyalingso	C			
	C) p-Glucosidase D) Springomyennase				
	Any molecule which acts directly on an enzyme to lower its catalytic rate is				
	called				
98.	A) Regulator B) Repressor	C			
	C) Inhibitor D) Moderator				

	Activation or inactivation of certain key regulatory enzymes is accomplished by				
99.	covalent modification of th	e amino aci	d:		D
	A) Tyrosine B) Pheny	ylalanine	C) Lysine	D) Serine	
	Example of an extracellular enzyme is				
100.	A) Lactate dehydrogenase	B) Cy	B) Cytochrome oxidase		С
	C) Pancreatic lipase	D) He	exokinase		