Arts, Commerce and Science College, Bodwad <u>Question Bank</u>

Class: F.Y.B.Sc. Sem: I

Subject: Physical & Inorganic Chemistry-I

- 1. Which of the following is a type of logarithm,
 - a) Briggsian
- b) Nepierian
- c) Both a & b
- d) Partial

- 2. The integral part of a logarithm is called as,
 - a) Mantissa
- b) Antilog
- c) Characteristic
- d) Mean

- 3. $\log A/B = ?$
 - a) log A + log B
- b) log A log B
- c) log A x log B
- d) Zero

- 4. Mantissa is determined by using......
 - a) Logarithm table
- b) Formula
- c) Manual calculation
- d) None

- 5. $log_e =log_{10}$
 - a) 0.4343
- b) 1.987
- c) 3.14
- d) 2.303

- 6. $\log x^n =$
 - a) n log x
- b) $\log x/n$
- c) log n/x
- d) 10

- $7. \log 10 = \dots$
 - a) 10
- b) 100
- c) 1
- d) 0.1

- 8. $\log 2 = \dots$
 - a) 0.4343
- b) 0.3010
- c) 0.693
- d) 2.303
- 9. Characteristic can be positive or negative.
 - a) True
- b) False
- c) Cannot be predicted
- d) All of these

10. Mantissa is alv	10. Mantissa is always positive.							
a) True	b) False c) Cannot be predicted d) All of these			f these				
11. If $\log y = x$ then, $y =$								
a) 100 – y	b) Antilog x	c) x	= y	d) x ^y				
12. The value of '	e' is							
a) 2.7182	b) 2.303	c) 4.1	182	d) 3.093				
12 0 11	1							
13. Graph has	•							
a) 2	b) 3	c) 4	•	d) 5				
14 A two dimens	ional graph has	aves						
				J) E				
a) 2	b) 3	c) 4		d) 5				
15. The point of in	nterception of axes	is called,						
-	b) Constant		c) co-ordinate	d) Or	rigin			
u) Intercept	o) constant	·	o) eo oramate	u , 01	·- -5			
16. $y = mx + b$ is	the equation of,							
a) hyperbola	b) Straight l	ine	c) Ellipse	d) circl	le			
17. If the intercep	t on y-axis is zero	then,						
a) line passes th	nrough origin		b) line is not	straight				
b) line is expone	ential		d) line is zig	zag				
10 m 1 cu		.1 1						
18. The slope of the	he line is shown by	the symb	ol,					
a) x	b) m	c) y	d) b					
19. For the line parallel to x-axis,								
-		c	ו .	, ·	1/ 37			
a) slope = 0	b) slope = i	ntınıty	c) intercep	t is zero	d) None			

20. For the line parallel to y-axis,

a) slope = 0	b) slop	pe = infinity	c) interce	ept is zero	d) None
21. Two straigh	t lines are said t	to be perpendic	cular to each of	ther when the	product of their slope is
a) 5	b) 1	c) -1	d) 0		
22. In the relation	on $y = f(x)$				
a) y is depend	lent variable		b) y is indepe	ndent variable	e
b) y is zero			d) y is consta	nt	
23. In the relation	on $y = f(x)$				
a) x is depend	ent variable	1	o) x is indepen	dent variabl	e
b) x is zero		Ċ	l) x is constant		
24. If $y = x^n$ the	en, $dy/dx = \dots$				
a) x ⁿ⁻¹	b) nx ⁿ	1	c) (n-1)x	d) (n-1)x ⁿ
25. If $y = 5$ the	en $dy/dx = \dots$				
a) 5x	b) zero		c) x ⁵	d) x-5	
26. If $y = 5x$ the	en $dy/dx = \dots$				
a) 5x	b) zero		c) 5	d) x	
27. If $y = x+1$	hen $dy/dx = \dots$				
a) 1	b) zero		c) 5	d) x	
28. If $y = x/2$	then $dy/dx = $.				
a) ½	b) 2x		c) x ²	d) 1	
29. If $y = \ln x$	then $dy/dx =$				
a) 1/x	b) 2x		c) x ²	d) 1	

30. According to	Ohm's law, current fl	owing through	a conductor is direc	ctly proportional to	
a) Length	b) EMF	c) Resist	ance d) Sp. 1	Resistance	
31. Resistance is o	directly proportional t	to			
a) Length	b) Area of cross	section	c) current	d) voltage	
32. Resistance is i	nversely proportiona	l to			
a) Length	b) Area of cross	section	c) sp. Resistance	d) current	
33. The unit of res	sistance is				
a) mho	b) ohm	c) volt	d) c	em	
34. The unit of co	nductance is				
a) mho	b) ohm	c) volt	d) c	em	
35. Conductance	isto	resistance			
a) directly prop	ortional	ŀ	o) inversely propo	rtional	
c) similar	c) similar d) not related				
36. Specific cond	uctance is the conduc	tance of a condu	actor having		
a) 2 cm legth &	2 cm ² area of cross s	section.			
b) 1 cm legth &	& 1 cm ² area of cross	s section.			
c) 5 cm legth &	5 cm ² area of cross s	section.			
d) 10 cm legth	& 10 cm ² area of cros	ss section.			
37. Conductivity	cell is used to measur	eof a se	olution.		
a) conductance	e b) resistar	nce c)	length	d) volume	
38. In a conductiv	rity cell, the ratio l/A	is called as,			
a) Specific resis	stance b) Specifi	c conductance	c) cell constant	d) EMF	
39solu	tion is used to determ	nine cell constar	nt.		

40. Specific conductar	acc (Ls) = ccc	ell constant (l	ζ) x			
a) observed resistan	ce b)) observed c	onductano	ce c)	concentration	on d) volume
41. cell constant (K) =	Specific co	onductance (I	Ls) x	•••		
a) observed resista	nce 1	b) observed o	conductanc	ce c)	concentration	on d) volume
42. Specific conductar	nce (Ls)	with	increase in	concenti	ration.	
a) increases	b) decrea	ises	c) remain	s constan	t	d) randomize
43. Equivalent conduc	tance	with inc	crease in c	oncentrat	ion.	
a) increases	b) decrea	ises	c) remain	s constan	t	d) randomize
44. In conductometric	titrations, ed	quivalence po	oint is dete	ermined b	у	
a) color indicator	b) grap	hical metho	d	c) calc	ulation	d) guessing
45. Both elements of 1	st period co	ntain valence	e electrons	in		
a) M shell	b) N shell	c) K	shell	d) S	shell	
46. In the periodic tabl		placed at right corner	c) botto	om left co	orner d) t	op right corner
					ŕ	•
47. Across the period t a) shielding effect	the atomic si	ize decreases		electric e	ffect	
c)increase in nucle	ar force of a	attraction	· •			of attraction
48. Down the column	the atomic s	ize				
a) increases	b) decrea	ises	c) remai	n same	d) fl	uctuates
49. Down the column	the atomic s	ize increases	due to			
a) shielding effect			b) photo	electric e	ffect	
c)addition of new shell			d) decrease in nuclear force of attraction			

c) NaOH

d) KOH

a) KCl

b) HCl

50. Down the column	n the electronegativ	vity		
a) increases	b) decreases	c) r	emain same	d) fluctuates
51. Down the column	the ionization ene	ergy		
a) increases	b) decreases	c) r	emain same	d) fluctuates
52. Down the column	the electron affini	ty		
a) increases	b) decreases	c) r	emain same	d) fluctuates
53. Across the period	the atomic size	fron	n left to right	
a) increases	b) decreases	c) r	emain same	d) fluctuates
54. Across the period	l the ionization ene	ergy	from left to right	
a) increases	b) decreases	c) r	emain same	d) fluctuates
55. Across the period	the electronegativ	ity	from left to right	
a) increases	b) decreases	c) r	emain same	d) fluctuates
56. Across the period a) increases			from left to right.	d) fluctuates
57. Ionization potenti	al is measured in			
a) kcal	b) kJ	c) eV	d) erg	
58. The periodic table	e consists of	blocks.		
a) 2	b) 3	c) 1	d) 4	
59. The first group ele	ements are called a	ıs		
a) alkali metals	b) alkaline ear		c) transition meta	ls d) noble gases
60. The second group	elements are calle	ed as		
a) alkali metals	b) alkaline ear		c) transition meta	als d) noble gases

u) unun meuns	o) aikaii	ne earth metals	c) trans	ition metals	d) noble gases
62. The d-block ele a) alkali metals		led asne earth metals	c) trans	sition metals	d) noble gases
63. The f-block ele a) Lanthanides			metals	c) transition me	etals d) noble gases
64. s-orbital can ac	ecommodate a b) 6	maximum of c) 10	electro	ons. d) 14	
65. p-orbital can aca a) 2	ccommodate a b) 6	maximum of	electr	ons. d) 14	
66. d-orbital can ac	ecommodate a b) 6	maximum of c) 10	electr	ons. d) 14	
67. f-orbital can ac	ecommodate a b) 6	maximum of c) 10	electro	ons. d) 14	
68. The ionization a) Atomic size		ls on, iic configuration	c) scre	ening effect	d) All of these
69. The tendency (a) electron affini		a molecule to attra		electrons is call	edd) atomic size
70. The amount of its ground statea) electron affin	e is called			added to an iso	lated gaseous atom in d) atomic size

71. The amount of energy required to remove an electron from an isolated gaseous atom in

its ground state is ca	alled		
a) electron affinity	b) electronegativity	c) ionization ene	rgy d) atomic size
72. The distance of the	outermost orbital from	the center of nucleus i	s called.
a) electron affinity	b) electronegativity	c) ionization ener	rgy d) atomic radius
73. The ion having posi	tive charge is called,		
a) cation	b) anion	c) free radical	d) carbene
74. The ion having nega			
a) cation	b) anion	c) free radical	d) carbene
75. Cation is bigger in s a) True	size than anion. b) False	c) Not related	d) same
a) Truc	b) Paise	c) Not related	u) same
76. Anion is bigger in s			T)
a) True	b) False	c) Not related	d) same
77. Crown ether is	ligand		
a) monodentate	b) bidentate	c) polydentate	d) tridentate
78. The electronic confi	guration of Lithium is,		
a) $1s^2 2s^1$	b) 1s ¹	c) $1s^2 2s^2$	$1) 1s^2 2s^2 2p^1$
79. The electronic confi	guration of Helium is,		
a) $1s^2 2s^1$	b) 1s ²	c) $1s^2 2s^2$	$1) 1s^2 2s^2 2p^1$
80. The electronic confi	guration of Hydrogen i	s,	
a) $1s^2 2s^1$	b) 1s ¹	c) $1s^2 2s^2$	$1) 1s^2 2s^2 2p^1$

81. The electronic configuration of Sodium is,

82. Sodium is			
a) Metal	b) Non-metal	c) Gas	d) Liquid
83. Hydrogen is			
a) Metal	b) Non-metal	c) Gas	d) Liquid
84. Formation of ions	is called as		
a) ionization	b) Hydrolysis	c) Solvation	d) addition
85. The s-block eleme	ents are good		
a) oxidizing agents	b) reducing a	gents c) ligand	d) nucleophiles
86. The adhesion of a	toms/ ions/ molecules	on the surface is calle	d,
a) absorption	b) adsorption	c) reaction	d) addition
87. The surface on wh	nich adsorption takes p	lace is called,	
a) adsorbate	b) adsorbent	c) solute	d) solvent
88. The material whic	h gets adsorbed is call-	ed,	
a) adsorbate	b) adsorbent	c) solute	d) solvent
89. Activated charcoa	l is generally used to r	emove	
a) gases	b) acids c)	coloured impurities	d) water
90. Isotherms are dete	ermined at		
a) variable tempera	ture b) Low tem	perature c) fluctu	ating d) constant
91. In several reaction	ns, activated charcoal is	s used as	
a) reactant	b) metal catalyst	c) heterogeneous	catalyst d) energy source

a) $1s^2 2s^1$ b) $1s^1$ c) $1s^2 2s^2$ d) $1s^2 2s^2 2p^6 3s^1$

92. The integration is of	types.						
a) 1 b) 2	2	c) 3	d) 4				
93. The integration is of two t	ypes,						
a) partial integration & complete integration b) Standard integration & general integration							
c) Integration without limits	s & within limits	d) Impor	tant & non-important	t			
94. $\int x dx =$							
a) x + C b) 1	c) 0	d) $x^2/2 + C$					
$95. \int (5x+2) dx =$							
a) $5x + C$ b) $x + C$	$C c) 5x^2$	$^2/2 + C$	d) $10x + C$				
96. Integration is to t	hat of differentiat	ion					
a) similar b) oppos	c) irrel	evant	d) None				
97. Constant must be used in,							
a) integration with limits	b) integration w	ithout limits	c) both d) nor	ne			
98. Integration without limits	is called as						
a) Definite integration	b) Indefinite int	egration c) Useful integration	d) All			
99. Integration within limits is called as							
a) Definite integration	b) Indefinite int	egration c)	Useful integration	d) All			
100. $\int d \ln V =$							
a) ln V b) 1/V	c) V	d) V^2					