	The Bodwad Sarvajanik Co-Op. Education Society Ltd., Bodwad			
	Arts, Commo	erce and Science College Bodwad		
		Question Bank		
	Class:-TYBSc	Sem:-VI		
	Subject: Graph Theory	Paper Name:- MTH 605		
Sr. No.		Questions	Ans	
1)	If of G have the sa are called as multiple ed	me end vertices then these edges of G ges or parallel edges.		
			В	
	a) One edge	 b) I wo or more edges d) All of these 		
		aj valor trese		
2)	If end vertices of an edg	e are same, then it said to be		
	a) Loop	b) Parallel edges	Α	
	c) Incident edges	d) None of these		
3)	A graph with parallel ed	ges is called as		
	a) Multiple graph	h) Loon		
	c) Multigraph	d) Both a and c		
4)	A graph containing no eo	dge is called as		
,				
	a) Simple graph	b) Complete graph	C	
	c) Null graph	d) Multiple graph		
5)	A graph having finite number of vertices is called as			
	a) Null graph	b) Infinite graph	D	
	c) Complete graph	d) Finite graph		
6)	A graph without self-loo	ps and parallel edges is called as		
	a) Simple graph	b) Regular graph	Α	

	c) Multiple graph	d) None of these	
7)	The number of vertices of gra	ph G = (V, E) i.e. $ V $ is called as	
	a) Size of a graph G	b) Order of a graph G	В
	c) Degree of a graph G	d) None of these	
8)	By Hand Shaking Lemma, if G	= (V, E) be a graph, then sum of	
	the degrees of all vertices of (of G.	G is equal to twice the number of	А
	a) Edges	b) Vertices	
	c) Sub graph	d) None of these	
9)	A subgraph of a graph G is sai	d to be spanning subgraph of G if it	
		0.	с
	a) One	b) More than one	
	c) All	d) None of these	
10)	A graph G is said to be a	if all the vertices of graph G have	
	same degree.		В
	a) Complete graph	b) Regular graph	
	c) Bipartite graph	d) None of these	
11)	If a vertex set V can be partiti	oned into two nonempty disjoint	
	subsets V_1 and V_2 such that e	very vertex in V_1 is adjacent to all alled	D
	a) Bipartite graph	b) Regular graph	
	c) Simple graph	d) Complete bipartite graph	
12)	Total number of edges in a co	mplete bipartite graph $K_{4,5}$ is	
	a) 20	b) 34	Α
	c) 25	d) 49	
13)	$\overline{\bar{G}} = \dots$		

a) N_n b) \overline{G} c) G d) None of these	С
---	---

14)	A walk is said to be trail if no .	is repeated in it.	
	a) Edge c) Point	b) Vertex d) None of these	Α
15)	The total number of times the of the walk.	edges occur in a walk is called as	В
	c) Distance	d) None of these	
16)	A graph G = (V, E) is called as . there exists at least one u-v pa a) Connected c) Component	 graph if for every u, v ∈ V ath in G. b) Disconnected d) None of these 	A
17)	A maximal connected subgrap the graph G. a) Root c) Centre	h of a graph G is called of b) Component d) None of these	В
18)	The maximum distance betwee of a graph. a) Diameter c) Distance	en two vertices of a graph is called b) Length d) None of these	Α
19)	A connected graph G containing is called as graph.	ng at least one Eulerian circuit in it,	

		Α
a) Eulerian	b) Hamiltonian	
c) Kuratowski's	d) None of these	

20)	A graph G is said to be graph if G has at least one Hamiltonian circuit.		В
	c) Kuratowski's	d) None of these	
21)	A complete graph K _m for	is Eulerian if and only if n is odd.	
/			
	a) $n \ge 1$	b) $n > 1$	В
	c) <i>n</i> < 1	d) None of these	
22)	K_n is Hamiltonian graph but	not Eulerian if is even.	
	a) m > 2	$h \mid n \geq 2$	•
	a) $n > 3$	d) None of these	A
23)	A complete bipartite graph <i>K</i>	$T_{m,n}$ is Hamiltonian if and only if	
	a) <i>m < n</i>	b) $m > n$	С
	c) $m = n$	d) None of these	
24)	The number of vertices in G i	s if and only if bipartite graph	
	G is Hamiltonian.		
			В
	a) Odd	b) Even	
	C) BOTH a and D	d) None of these	
25)	A connected graph without c	ircuit is called as	
	a) Tree	b) Path	Α
	c) Forest	d) None of these	

26)	A collection of	trees is called as a forest.		
	a) Joint c) Disjoint	b) Connected d) None of these	с	

27)	A tree with one vertex is called as a tree.		
	a) Trivial	b) Non-trivial	Α
	c) Rooted	d) None of these	
28)	A complete graph K_n is a tre	e if and only if	
	a) n = 1	b) n = 2	D
	c) n = 1 and n = 2	d) n = 1 or n = 2	
29)	The path between every pair	r of vertices of a tree is	
	a) Two	b) Unique	В
	c) More than two	d) None of these	
30)	A connected graph with n ve	ertices , edges is a tree.	
	a) n – 3	b) n - 2	с
	c) n - 1	d) None of these	
31)	A vertex in a graph G with m	inimum eccentricity is called	
	a) Radius of a graph G	b) Centre of a graph G	В
	c) Diameter of a graph G	d) None of these	
32)	A maximum eccentricity of a	vertex of a graph is called a	

of g	raph G.		Δ
a) Diam	eter b)	Radius	A
c) Diago	onal d)	None of these	

33)	A tree in which one vertex is distinguished from all others is called a tree.		С
	a) Trivial	b) Binary	
	c) Rooted	d) None of these	
34)	If a tree contain exactly one	vertex of degree two and all other	
	vertices have degree either tree.	one or three then the graph is called	В
	a) Spanning	b) Binarv	
	c) Trivial	d) None of these	
	,	,	
35)	In a binary trees with n vert	ices has pendent vertices.	
	a) n – 1	b) n	С
	c) $\frac{(n+1)}{2}$	d) None of these	
	2		
36)	A subgraph T of a connected	graph G is said to be spanning tree	
	of graph G if T is tree and		
			Α
	a) V(G) = V(T)	b) E(G) = E(T)	
	c) V(G) = E(T)	d) None of these	
27)	Let T be a snanning tree of a	connected graph G of n vertices	
57)	then number of edges (n-1)	in the tree T is called of G.	
	, ,		В
	a) Degree	b) Rank	
	c) Nullity	d) None of these	

38)	Let T be a spanning tr and q edges, then nul	ee of a connected graph G of n vertices lity of G is	
	a) q c) q+1	b) q - 1 d) q - n + 1	

39)	A minimal disconnecting set of g	raph G is called of G.	
	a) Cut set b) c) Path d)	Fundamental cut set Walk	A
40)	Which of the following is true?		
	a) $\delta(G) < \lambda(G) < K(G)$ b) c) $\lambda(G) < K(G) < \delta(G)$ d)) K(G) < δ(G) < λ(G) K(G) < λ(G) < δ(G)	D
41)	Let T be a spanning tree of a cor which contain exactly one branc respect to T.	nected graph G, then a cut-set h of T is called with	А
	a) Fundamental cut-set b) c) Both a and b d)	Fundamental cycle None of these	
42)	Let T be a spanning tree of a cor formed by adding one chord to T.	nected graph G, then cycle I is called with respect to	В
	a) Fundamental cut-set b) c) Both a and b d)	Fundamental cycle None of these	
43)	A graph which can be drawn on edges is called graph.	a plane without intersecting of	А
	a) Planar b) c) Connected d)	Plane None of these	

44)	A representation of a planar graph in which no two edges intersects is called graph or embedding.		В
	a) Planar c) Connected	b) Planed) None of these	

4	5)	In a plane graph regions bounded by cycles are called or regions or windows.		•
		a) Faces	b) Paths	A
		a) Faces	d) None of these	
			d) None of these	
4	6)	By Euler's formula for planar graph, if G is a connected plane		
		graph with p vertices, q ed	ges and r faces then	
				С
		a) p – r + q = 2	b) q – p + r = 2	
		c) $p - q + r = 2$	d) $r - p + q = 2$	
4	7)	The number of edges in a planar graph with 16 vertices and 20		
		faces.		_
				D
		a) 2	b) 20	
		C) 16	d) 34	
4	8)	If Geometrical dual of G is G then G is called as graph.		
		a) Planar	b) Self dual	В
		c) Geometrical Dual	d) None of these	
4	9)	Geometrical dual of K ₄ is		
		a) <i>K</i> ₁	b) <i>N</i> ₄	С
		c) <i>K</i> ₄	d) <i>K</i> ₅	
5	0)	The minimum number of c	colours required to colour a graph G is	
	-1			1

called the		•
a) Chromatic number	b) Dual	A
c) Colouring	d) None of these	

51)	In the incidence matrix m × elements is a) Vertex-Vertex c) Vertex-Edge	n matrix A such that pair of b) Edge-Edge d) None of these	с
52)	The adjacency matrix is a) Symmetric c) Both a and b	b) Asymmetric d) None of these	A
53)	A simple diagraph in which t from every vertex to every c diagraph. a) Simple c) Regular	 chere is exactly one edge directed other vertex, is called as b) Complete d) Balanced 	В
54)	A diagraph D is said to be balanced if for every vertex v, the indegree of v is equal to out degree of v that is a) $d^+(v) < d^-(v)$ b) $d^+(v) > d^-(v)$ c) $d^+(v) = d^-(v)$ d) None of these		с
55)	A balanced diagraph is said t has the indegree and a) One c) More than one	to be regular graph if every vertex I outdegree as every other vertex. b) Different d) Same	D

56)	The incidence matrix of a directed graph is a $n \times m$ matrix B where n and m are the number of vertices and edges respectively, such that $B_{ij} = \dots$ if the edge e_j leaves vertex v_i , \dots if it enter vertex v_i and otherwise \dots		D
	a) -1, 0, 1 b) c) 1, 0, -1 d)	0, -1, 1 -1, 1, 0	