|  | The Bodwad Sarvajanik Co-Op. Education Society Ltd., Bodwad <br> Arts, Commerce and Science College Bodwad <br> Question Bank <br> Class:-TYBSc <br> Sem:-VI <br> Subject: Graph Theory <br> Paper Name:- MTH 605 |  |
| :---: | :---: | :---: |
| Sr. <br> No. | Questions | Ans |
| 1) | If $\qquad$ of G have the same end vertices then these edges of G are called as multiple edges or parallel edges. <br> a) One edge <br> b) Two or more edges <br> c) Two edges <br> d) All of these | B |
| 2) | If end vertices of an edge are same, then it said to be $\qquad$ <br> a) Loop <br> b) Parallel edges <br> c) Incident edges <br> d) None of these | A |
| 3) | A graph with parallel edges is called as $\qquad$ <br> a) Multiple graph <br> b) Loop <br> c) Multigraph <br> d) Both a and c | D |
| 4) | A graph containing no edge is called as $\qquad$ <br> a) Simple graph <br> b) Complete graph <br> c) Null graph <br> d) Multiple graph | C |
| 5) | A graph having finite number of vertices is called as <br> a) Null graph <br> b) Infinite graph <br> c) Complete graph <br> d) Finite graph | D |
| 6) | A graph without self-loops and parallel edges is called as $\qquad$ <br> a) Simple graph <br> b) Regular graph | A |


|  | c) Multiple graph d) None of these |  |
| :---: | :---: | :---: |
| 7) | The number of vertices of graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ i.e. $\|V\|$ is called as ...... <br> a) Size of a graph G <br> b) Order of a graph G <br> c) Degree of a graph G <br> d) None of these | B |
| 8) | By Hand Shaking Lemma, if $G=(V, E)$ be a graph, then sum of the degrees of all vertices of G is equal to twice the number of $\qquad$ of G. <br> a) Edges <br> b) Vertices <br> c) Sub graph <br> d) None of these | A |
| 9) | A subgraph of a graph $G$ is said to be spanning subgraph of $G$ if it contains $\qquad$ the vertices of $G$. <br> a) One <br> b) More than one <br> c) All <br> d) None of these | C |
| 10) | A graph G is said to be a $\qquad$ if all the vertices of graph $G$ have same degree. <br> a) Complete graph <br> b) Regular graph <br> c) Bipartite graph <br> d) None of these | B |
| 11) | If a vertex set V can be partitioned into two nonempty disjoint subsets $V_{1}$ and $V_{2}$ such that every vertex in $V_{1}$ is adjacent to all vertices in $V_{2}$, then graph is called $\qquad$ <br> a) Bipartite graph <br> b) Regular graph <br> c) Simple graph <br> d) Complete bipartite graph | D |
| 12) | Total number of edges in a complete bipartite graph $K_{4,5}$ is $\qquad$ <br> a) 20 <br> b) 34 <br> c) 25 <br> d) 49 | A |
| 13) | $\overline{\bar{G}}=\ldots \ldots \ldots \ldots$ |  |


|  |  | b) $\bar{G}$ |
| :--- | :--- | :--- |
| a) $N_{n}$ | d) None of these | C |
| c) $G$ |  |  |


| 14) | A walk is said to be trail if no $\qquad$ is repeated in it. <br> a) Edge <br> b) Vertex <br> c) Point <br> d) None of these | A |
| :---: | :---: | :---: |
| 15) | The total number of times the edges occur in a walk is called as $\qquad$ of the walk. <br> a) Weight <br> b) Length <br> c) Distance <br> d) None of these | B |
| 16) | A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is called as $\qquad$ graph if for every $u, v \in V$ there exists at least one $u$-v path in $G$. <br> a) Connected <br> b) Disconnected <br> c) Component <br> d) None of these | A |
| 17) | A maximal connected subgraph of a graph G is called $\qquad$ of the graph G . <br> a) Root <br> b) Component <br> c) Centre <br> d) None of these | B |
| 18) | The maximum distance between two vertices of a graph is called $\qquad$ of a graph. <br> a) Diameter <br> b) Length <br> c) Distance <br> d) None of these | A |
| 19) | A connected graph G containing at least one Eulerian circuit in it, is called as $\qquad$ graph. |  |


|  | a) Eulerian | b) Hamiltonian |
| :--- | :--- | :--- |
| c) Kuratowski's | d) None of these | A |


| 20) | A graph $G$ is said to be $\qquad$ graph if $G$ has at least one Hamiltonian circuit. <br> a) Eulerian <br> b) Hamiltonian <br> c) Kuratowski's <br> d) None of these | B |
| :---: | :---: | :---: |
| 21) | A complete graph $K_{n}$ for $\qquad$ is Eulerian if and only if n is odd. <br> a) $n \geq 1$ <br> b) $n>1$ <br> c) $n<1$ <br> d) None of these | B |
| 22) | $K_{n}$ is Hamiltonian graph but not Eulerian if $\qquad$ is even. <br> a) $n>3$ <br> b) $n>2$ <br> c) $n>1$ <br> d) None of these | A |
| 23) | A complete bipartite graph $K_{m, n}$ is Hamiltonian if and only if $\qquad$ <br> a) $m<n$ <br> b) $m>n$ <br> c) $m=n$ <br> d) None of these | C |
| 24) | The number of vertices in G is $\qquad$ if and only if bipartite graph G is Hamiltonian. <br> a) Odd <br> b) Even <br> c) Both a and b <br> d) None of these | B |
| 25) | A connected graph without circuit is called as $\qquad$ <br> a) Tree <br> b) Path <br> c) Forest <br> d) None of these | A |


|  |  |  |
| :--- | :--- | :--- | :--- |
| 26) | A collection of .......... trees is called as a forest. |  |
|  | a) Joint b) Connected <br> c) Disjoint d) None of these |  |
|  |  |  |


| 27) | A tree with one vertex is called as a $\qquad$ tree. <br> a) Trivial <br> b) Non-trivial <br> c) Rooted <br> d) None of these | A |
| :---: | :---: | :---: |
| 28) | A complete graph $K_{n}$ is a tree if and only if $\qquad$ <br> a) $n=1$ <br> b) $\mathrm{n}=2$ <br> c) $\mathrm{n}=1$ and $\mathrm{n}=2$ <br> d) $n=1$ or $n=2$ | D |
| 29) | The path between every pair of vertices of a tree is $\qquad$ <br> a) Two <br> b) Unique <br> c) More than two <br> d) None of these | B |
| 30) | A connected graph with $n$ vertices $\qquad$ edges is a tree. <br> a) $n-3$ <br> b) n-2 <br> c) $\mathrm{n}-1$ <br> d) None of these | C |
| 31) | A vertex in a graph $G$ with minimum eccentricity is called $\qquad$ <br> a) Radius of a graph G <br> b) Centre of a graph G <br> c) Diameter of a graph G <br> d) None of these | B |
| 32) | A maximum eccentricity of a vertex of a graph is called a |  |


|  | ..........of graph G. | A) Radius |
| :--- | :--- | :--- | :--- |
| a) Diameter <br> c) Diagonal | d) None of these |  |


| 33) | A tree in which one vertex is distinguished from all others is called a $\qquad$ tree. <br> a) Trivial <br> b) Binary <br> c) Rooted <br> d) None of these | C |
| :---: | :---: | :---: |
| 34) | If a tree contain exactly one vertex of degree two and all other vertices have degree either one or three then the graph is called $\qquad$ tree. <br> a) Spanning <br> b) Binary <br> c) Trivial <br> d) None of these | B |
| 35) | In a binary trees with $n$ vertices has $\qquad$ pendent vertices. <br> a) $n-1$ <br> b) $n$ <br> c) $\frac{(n+1)}{2}$ <br> d) None of these | C |
| 36) | A subgraph $T$ of a connected graph $G$ is said to be spanning tree of graph G if T is tree and $\qquad$ <br> a) $V(G)=V(T)$ <br> b) $E(G)=E(T)$ <br> c) $V(G)=E(T)$ <br> d) None of these | A |
| 37) | Let $T$ be a spanning tree of a connected graph $G$ of $n$ vertices, then number of edges ( $n-1$ ) in the tree $T$ is called $\qquad$ of G. <br> a) Degree <br> b) Rank <br> c) Nullity <br> d) None of these | B |

38) Let $T$ be a spanning tree of a connected graph $G$ of $n$ vertices and $q$ edges, then nullity of $G$ is $\qquad$
a) $q$
b) $q-1$
c) $q+1$
d) $q-n+1$

| 39) | A minimal disconnecting set of graph $G$ is called $\qquad$ of G. <br> a) Cut set <br> b) Fundamental cut set <br> c) Path <br> d) Walk | A |
| :---: | :---: | :---: |
| 40) | Which of the following is true? <br> a) $\delta(G)<\lambda(G)<K(G)$ <br> b) $K(G)<\delta(G)<\lambda(G)$ <br> c) $\lambda(\mathrm{G})<\mathrm{K}(\mathrm{G})<\delta(\mathrm{G})$ <br> d) $K(G)<\lambda(G)<\delta(G)$ | D |
| 41) | Let $T$ be a spanning tree of a connected graph $G$, then a cut-set which contain exactly one branch of $T$ is called $\qquad$ with respect to T . <br> a) Fundamental cut-set <br> b) Fundamental cycle <br> c) Both a and b <br> d) None of these | A |
| 42) | Let $T$ be a spanning tree of a connected graph $G$, then cycle formed by adding one chord to T is called $\qquad$ with respect to T. <br> a) Fundamental cut-set <br> b) Fundamental cycle <br> c) Both $a$ and b <br> d) None of these | B |
| 43) | A graph which can be drawn on a plane without intersecting of edges is called $\qquad$ graph. <br> a) Planar <br> b) Plane <br> c) Connected <br> d) None of these | A |

44) A representation of a planar graph in which no two edges intersects is called $\qquad$ graph or embedding.
a) Planar
b) Plane
c) Connected
d) None of these

| 45) | In a plane graph regions bounded by cycles are called $\qquad$ or regions or windows. <br> a) Faces <br> b) Paths <br> c) Circuits <br> d) None of these | A |
| :---: | :---: | :---: |
| 46) | By Euler's formula for planar graph, if $G$ is a connected plane graph with $p$ vertices, $q$ edges and $r$ faces then $\qquad$ <br> a) $p-r+q=2$ <br> b) $q-p+r=2$ <br> c) $p-q+r=2$ <br> d) $r-p+q=2$ | C |
| 47) | The number of edges in a planar graph with 16 vertices and 20 faces. <br> a) 2 <br> b) 20 <br> c) 16 <br> d) 34 | D |
| 48) | If Geometrical dual of G is G then G is called as $\qquad$ graph. <br> a) Planar <br> b) Self dual <br> c) Geometrical Dual <br> d) None of these | B |
| 49) | Geometrical dual of $K_{4}$ is $\qquad$ <br> a) $K_{1}$ <br> b) $N_{4}$ <br> c) $K_{4}$ <br> d) $K_{5}$ | C |
| 50) | The minimum number of colours required to colour a graph G is |  |


| called the ............. |  | A |
| :--- | :--- | :--- | :--- |
| a) Chromatic number b) Dual <br> c) Colouring d) None of these |  |  |


| 51) | In the incidence matrix $\mathrm{m} \times \mathrm{n}$ matrix $A$ such that pair of elements is $\qquad$ <br> a) Vertex-Vertex <br> b) Edge-Edge <br> c) Vertex-Edge <br> d) None of these | C |
| :---: | :---: | :---: |
| 52) | The adjacency matrix is $\qquad$ <br> a) Symmetric <br> b) Asymmetric <br> c) Both $a$ and b <br> d) None of these | A |
| 53) | A simple diagraph in which there is exactly one edge directed from every vertex to every other vertex, is called as $\qquad$ diagraph. <br> a) Simple <br> b) Complete <br> c) Regular <br> d) Balanced | B |
| 54) | A diagraph $D$ is said to be balanced if for every vertex $v$, the indegree of $v$ is equal to out degree of $v$ that is $\qquad$ <br> a) $d^{+}(v)<d^{-}(v)$ <br> b) $d^{+}(v)>d^{-}(v)$ <br> c) $d^{+}(v)=d^{-}(v)$ <br> d) None of these | C |
| 55) | A balanced diagraph is said to be regular graph if every vertex has the $\qquad$ indegree and outdegree as every other vertex. <br> a) One <br> b) Different <br> c) More than one <br> d) Same | D |


| 56) | The incidence matrix of a directed graph is a $n \times m$ matrix $B$ <br>  <br> where $n$ and $m$ are the number of vertices and edges <br> respectively, such that $B_{i j}=\ldots .$. if the edge $e_{j}$ leaves vertex $v_{i}$, <br> $\ldots .$. if it enter vertex $v_{i}$ and otherwise ..... | D |
| :--- | :--- | :--- |
| a) $-1,0,1$ b) $0,-1,1$ <br> c) $1,0,-1$ d) $-1,1,0$ |  |  |

