	The Bodwad Sarvajanik Co-Op. Education Society Ltd., Bodwad	
	Arts, Commerce and Science College Bodwad	
	Question Bank	
	Class:-TYBSc Sem:-VI	
	Subject: Ordinary and Partial Differential Equations Paper Name:- MTH 604	
Sr. No.	Questions	Ans
1)	Partial difference equation by eliminating constants a and b from equation $z=ax+by+ab$ is	A
	a) $z = px + qy + pq$ b) $z = qx + py + pq$ c) $z = px - qy$ d) None of these	
2)	Eliminating arbitrary function f from $z = x + y + f(xy)$ we get partial differential equation a) $px + qy = x + y$ b) $px - qy = x - y$ c) $px - qy = 0$ d) None of these	В
3)	Partial differential equation by eliminating constant a and b from equation $z=ax+by+a^2+b^2$ is a) $z=px-qy-p^2-q^2$ b) $z=px-qy$ c) $z=px+qy+p^2+q^2$ d) None of these	С
4)	The general integral of $P_p+Q_q=R$ with usual notation is a) $f(u)=0$ b) $f(v)=0$ c) $f(u,v)=0$ d) None of these	С
5)	Lagrange's auxiliary equation for $xp + yq = z$ is a) $\frac{dx}{y} = \frac{dy}{x}$ b) $\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z}$ c) $\frac{dx}{z} = \frac{dy}{x} = \frac{dz}{y}$ d) None of these	В

6)	Lagrange's auxiliary equation for $zp=-x$	is
	dx dy	$= \frac{dy}{z} = \frac{dz}{-x}$ he of these
7)	$\ln f(x, y, z, p, q) = 0, \ p = \dots$	A
	a) $\frac{\partial z}{\partial x}$ b) $\frac{\partial z}{\partial y}$ c) $\frac{\partial x}{\partial z}$ d) $\frac{\partial y}{\partial z}$	
8)	Partial differential equation for $f(x, y, z, a)$, b) = 0 is
		\mathbf{B} ne of these
9)	From a partial differential equation for $z=ax-by$ by eliminating constants a and b is	
		px + qy e of these
10)	With usual notation $f(x, y, z, p, q) = 0$, q	ı =
	a) $\frac{\partial z}{\partial y}$ c) $\frac{\partial z}{\partial z}$ b) $\frac{\partial z}{\partial x}$ d) $\frac{\partial y}{\partial z}$	A
11)	With usual notation, in linear partial differential equation $(y+xz)p-(x+yz)q=x^2-y^2$ value of Q is	
	a) $-x + yz$ b) $-(x + yz)$ c) $y+xz$ d) x^2	$ \begin{array}{c c} x + yz \\ -y^2 \end{array} $

12)	In the given equation $z(xp - yq) = 0$ notation, value of R is a) $y^2 - x^2$ c) xz	$= y^2 - x^2 \text{ with usual}$ b) $x^2 - y^2$ d) yz	Α
13)	General integral of the given equat a) $y = c_1, x^2 + z^2 = c_2$ c) $y = 0, x^2 - z^2 = c_2$	b) $y = 0, x^2 + z^2 = c_1$ d) None of these	Α
14)	If the equation is of the form $\frac{d^n y}{dx^n} =$ sides by a) $\left(\frac{dy}{dx}\right)^2$ c) $2\frac{dy}{dx}$	b) $3\frac{dy}{dx}$ d) None of these	D
15)	With usual notation if $p_1-p_0=0$ equation $p_0\frac{dy}{dx}-p_1y=0$ is a) Exact c) Regular	then the differential b) Non-Exact d) None of these	Α
16)	Given equation $xy\frac{d^2y}{dx^2} + x\left(\frac{dy}{dx}\right) + x$ a) Linear c) Regular	$y \frac{dy}{dx} = 0$ is b) Non-linear d) None of these	В
17)	If $y''' = xe^x$ then $y'' =$ a) $xe^x + c_1$ c) $xe^x - e^x + c_1$	b) $e^x - c_1$ d) None of these	С

18)	If $y'' = \frac{a}{x}$ then $y' = \dots$		
	X		
	a) $a \log x + c_1$	b) $\frac{a}{x} + c_1$	Α
	c) $\log x$	d) None of these	
19)	If $y' = a \log x + c_1$ then $y = \dots$		
	<i>y</i> 0 1 <i>y</i>		
	a) $a \log x + c_1 x + c_2$	b) $ax(\log x - 1) + c_1 x + c_2$	В
	c) 0	d) None of these	
20)	If $y'' = \frac{a}{v^3}$ then $(y')^2 =$		
	_	_	٨
	a) $\frac{-a}{y^2} + c_1$	b) $\frac{a}{y^2} + c_1$	A
	a) $\frac{-a}{y^2} + c_1$ c) $\frac{a}{y^4} + c_1$	d) None of these	
21)	$d^2v = a$		
21)	If $\frac{d^2y}{dx^2} = \frac{a}{y^3}$ then its integrating fac	ctor is	
	dy	$b = 2^{dy}$	В
	a) $\frac{dy}{dx}$	b) $2\frac{dy}{dx}$ d) $\left(\frac{dy}{dx}\right)^2$	
	c) $3\frac{dy}{dx}$	d) $\left(\frac{dy}{dx}\right)$	
22)	If $y''' = \log x$ then $y'' = \dots$		
	\ 1		_
	a) $x \log x - x + c_1$ c) $\log x$	b) $\log x + x + c_1$ d) None of these	Α
	c, logx	d) None of these	
23)	If $(x^2 - 2x)\frac{dy}{dx} + (3x^2 - 2)y = 0$	c_1 then with usual notation	
	$p_1 - p_0 = \dots$		Α
	a) 0	b) 1	
	c) Non-zero	d) None of these	

24)	First integral of $xy\frac{d^2y}{dx^2} + x\left(\frac{dy}{dx}\right)^2 + y\frac{dy}{dx} = 0$ is	
	a) $xy\frac{dy}{dx} = c_1$ b) $y\frac{dy}{dx} = 0$	Α
	c) $x \frac{dy}{dx} = c_1$ d) None of these	
25)	$\ln \cot x \frac{dy}{dx} + (\csc^2 x)y = c_1 \text{ with usual notation}$	
	$p_1 - p_0 = \dots$	В
	a) 0 b) $2 \csc^2 x$	
	c) $cosec^2 x$ d) None of these	
26)	The exponential function e^x has the power series	
	a) $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ b) $1 - x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$	Α
	c) $1 + x + x^2 + x^3 + \dots$ d) $1 - x + x^2 - x^3 + \dots$	
27\	Ear the equation $x(x-1)y'' + (\sin x)y' + 2x(x-1)y = 0$	
27)	For the equation $x(x-1)y'' + (\sin x)y' + 2x(x-1)y = 0$, consider the following statements.	
	$P \Rightarrow x = 0$ is regular singular point.	Α
	$Q \Rightarrow x = 1$ is regular singular point.	
	a) Both P and Q are true b) P is false but Q is true	
	c) P is true but Q is false Q and Q are false	
28)	The power series solution of $y' - y = 0$ is	
	$x^2 + x^3 + y + y^2 + x^3 + y + y + y + y + y + y + y + y + y + $	D
	a) $c_0 \left(1 - x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \right)$ b) $c_0 \left(1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \dots \right)$ c) $c_0 \left(1 - x + \frac{x^2}{2} + \frac{x^3}{3} + \dots \right)$ d) $c_0 \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \right)$	
	c) $c_0 \left(1 - x + \frac{1}{2} + \frac{1}{3} + \dots\right)$ d) $c_0 \left(1 + x + \frac{1}{2!} + \frac{1}{3!} + \dots\right)$	

29)	The indicial equation for $x(1+x^2)y'' + (\cos x)y' + (1-3x+x^2)y = 0$ is	
	a) $r^2 = 0$ b) $r^2 - r = 0$ c) $r^2 + r = 0$ d) $r^2 - 1 = 0$	
30)	The indicial equation for $9x(1-x)y'' + 12y' + 4y = 0$ is a) $k(k-7) = 0$ b) $k(3k-5) = 0$ c) $k(k-5) = 0$ d) $k(3k-7) = 0$	В
31)	The indicial equation for $2x^2y'' + xy' - (x+1)y = 0$ is a) $k^2 - 1 = 0$ b) $k^2 + 1 = 0$ c) $(k-1)^2 = 0$ d) None of these	A
32)	Singular point are a) Regular b) Irregular c) Regular and irregular d) None of these	С
33)	For the equation $(x^2 - 1)y'' + xy' - y = 0$ which of the following statement is true? a) 0 and 1 both ordinary point b) 0 and 1 both regular singular point c) 0 is ordinary and 1 is regular d) None of these singular point	С
34)	The point $x=x_0$ is called ordinary point of equation $y''+P(x)y'+Q(x)y=0$ if a) $P(x)$ and $Q(x)$ are b) $P(x)$ and $Q(x)$ are not analytic at x_0 analytic at x_0 c) $P(x)$ is analytic but $Q(x)$ d) None of these is not analytic at x_0	A

35)	A point $x = x_0$ is called regular singular point of equation $y'' + P(x)y' + Q(x)y = 0$ if		A
	a) Both $(x - x_0)P(x)$ and	<u>-</u>	
	$(x - x_0)^2 Q(x) \text{ are analytic}$ c) Only $(x - x_0) P(x)$	is analytic d) None of these	
	is analytic	·	
36)	$\ln xy''' + (x^2 + x + 3)y'' + (4x^2 + x + 3)y$	$(x^2 + 2)y' + 2y = 0, p_3 - p_2' + 1$	
	$p_1'' - p_0''' = \dots$		Α
	a) 0	b) 2	
	c) Non-zero	d) 1	
37)	If $(x^3 - 2y)y' + (3x^2 - 2)y = 0$	then its first integral is	
	a) $(3x^2 - 2)y = c_1$	b) $(x^3 - 2y)y = c_1$	В
	(a) $(3x - 2)y - c_1$ (c) $y = c_1 x$	d) None of these	Ь
	, , ,		
38)	First integral of $\cos y \frac{d^2y}{dx^2} - \sin y \left(\frac{dy}{dx}\right)^2 = 1$ is		
	dv	dv	Α
	a) $\cos y \frac{dy}{dx} = x + c_1$	$b) \sin y \frac{dy}{dx} = c_1$	
	$c) \cos y \frac{dy}{dx} = c_1$	d) None of these	
39)	If $y = e^{ax}$ is a solution of $y'' + Py' + Qy = 0$ then		
	-) -2 D - O - O	L) D O O	
	a) $a^2 + Pa + Q = 0$ c) $1 + P + Q = 0$	b) $P + Qx = 0$ d) $1 - P + Q = 0$	Α
		,	
40)	If $y = x$ is a solution of $y'' + Py' + Qy = 0$		
	a) $a^2 + Pa + Q = 0$	b) $P + Qx = 0$	В
	c) $1 - P + Q = 0$	d) $1 + P + Q = 0$	

41)	If $y = e^x$ is a solution of $y'' + Py' + Qy = 0$ then		
	a) $1 + P + Q = 0$	b) $1 - P - Q = 0$	Α
	c) P + Qx = 0	d) $a^2 + Pa + Q = 0$	
42)	$If m(m-1) + Pmx + Qx^2 = 0 t$	hen $y = \dots$ is a solution of	
	$y^{\prime\prime} + Py^{\prime} + Qy = 0$		В
	a) x^{m-1}	b) <i>x</i> ^{<i>m</i>}	b
	c) e^{ax}	d) None of these	
43)	Order of $y'' + Py' + Qy = R$ with	usual notation is	
	a) 1	b) Zero	С
	c) 2	d) None of these	
44)	With usual notation, in a given equ	uation $\sin^2 x \frac{d^2y}{dx^2} - 2y = 0$,	
	value of $P = \dots$	ux	Α
	a) 0	b) $-2 \csc^2 x$	
	c) $\sin^2 x$	d) None of these	
45)	By using removal of first derivative	-	
	solution of the given equation the	n V is given by usual notation	В
	a) $\frac{d^2V}{dx^2} - SV = I$	b) $\frac{d^2V}{dx^2} + IV = S$	
	a) $\frac{d^2V}{dx^2} - SV = I$ c) $\frac{d^2V}{dx^2} - V = \frac{S}{I}$	d) None of these	
46)	To solve $\frac{d^2y}{dx^2} - \cot x \frac{dy}{dx} - y \sin^2 x = \cos x$ by changing the		
	independent variable with usual notation we choose $z =$		Α
	a) $-\cos x$	b) cos <i>x</i>	
	c) $\sin x$	d) tan x	

47)	To solve $y'' - \cot xy' - y \sin^2 x = \cos x - \cos^3 x$ by change of independent variable, with usual notation we use z such that $\left(\frac{dz}{dx}\right)^2 = \dots$		A
	a) $\sin^2 x$ b)	$-\sin^2 x$	
	c) $-\cot x$ d)	$\cot x$	
48)	If $\frac{dy}{dx} + \left(\frac{4}{x}\right)y = 0$ then $y = \dots$		
	Λ. C.	$-\frac{c_1}{x^3}$ None of these	Α
49)	By change of independent variable, with usual notation we remove derivative from $y^{\prime\prime}+Py^{\prime}+Qy=R$		В
	a) Second b)	First	
	c) Third d)	None of these	
50)	To solve $y'' + \frac{2}{1+x^2}y' + \frac{4}{(1+x^2)^2}y = 0$ by change of independent variable, with usual notation we choose $z = \dots$		В
	, , , , , , , , , , , , , , , , , , , ,	$2 \tan^{-1}(x)$ $\sin^{-1}(x)$	