	The Bodwad Sarvajanik Co-Op. Education Society Ltd., Bodwad Arts, Commerce and Science College Bodwad Question Bank	
Sr. No.	Questions	Ans
1.	If V is a vector space over field F, then the elements of V are called \qquad (A) scalars (C) rationals (B) vectors (D) unit	B
2.) If V is a vector space over field F, then for $x, v \in V, \alpha \in F$ i) $x+y \in V$, ii) $\alpha x \in V$ (A) Only i) is true (B) Only il) is true (C) Both are true (D) Both are not true	C
3.	If $V(F)$ is a vector space then $(V,+)$ is \qquad (A) Ring (B) non abelian Ring (C) simple Ring (D) None of these D	D
4.	A non-empty set V is be vector space then \qquad (A) $a v=V$ (B) $a v \notin V$ (C) $a v \neq V$ (D) None of these D	D
5.	$\{0\}$ and (F) are \qquad subspaces of a vector space $V F$. (A) no $t(B)$ trivial (C) non-trivial (D) None of these	B
6.	If $U=(3,1,0,-4)$ and $V=(-1,2,1,4)$ be vectors of $R^{4}(R)$ then $U+3 V=$ \qquad (A) $(5,4,2,1)$ (B) $(0,7,3,8)$ (C) $(1,-2,1,-4)$ (D) $(5,4,1,-4)$	B

7.	If $U=(1,2,1,2)$ and $V=(0,1,-1,4)$ be vectors of $R^{4}(R)$ then $2 U-V=$ \qquad (A) $(2,3,3,0)$ (B) $(0,-1,3,2)$ (C) $(2,3,3,0)$ (D) $(5,4,1,-4) \mathrm{A}$	A
8.	If $U=(2,1,3)$ and $V=(3,2,1)$ be vectors of $R^{3}(R)$ then $U+2 V=$ \qquad (A) $(5,4,2)$ (B) $(0,7,3)$ (C) $(8,6,5)$ (D) $(8,5,5)$	D
9.	$U=\{, b, c: a \geq b\}$ is \qquad of $R^{3} R$. (A) subspace (B) scalar (C) not a subspace (D) None of these C	C
10.	Union of two subspaces is \qquad (A)subspace (B) Need not a subspace (C) always empty set (D) None of these	B
11.	If V is a vector space over F then $\{0\}$ is \qquad (A) linearly dependent (B) linearly independent (C) Scale (D) None of these A	A
12.	If V is a vector space over F and $v \in V$ then $\{v\}$ is linearly independent if \qquad (A) $v=$ infinity (B) v is non zero (C) v is equal to zero (D) None of these B	B
13.	Superset of linearly dependent set is \qquad (A) linearly independent (B) linearly dependant (C) not defined (D) infinite set	B

14.	The system of vectors($1,1,2$), $(-1,2,3),(1,2,4)$ is \qquad (A) linearly independent (B) Basis of $R 4$ (C) linearly dependant (D) None of these	A
15.	The system of vectors($2,1,2$) , ($-1,4,3$ is \qquad (A) linearly independent (B) Basis of $R 3$ (C) linearly dependant (D) None of these A	A
16.	Let $S=\{2,3,1,1,3,5\}$ then S is (A) Linearly independent set (B) Linearly dependant set (C) Basis (D) None of these B	B
17.	The system of two vectors $(1,2),(2,4)$ is \qquad (A) linearly independent (B) Basis of $R 4$ (C) linearly dependant (D) None of these C	C
18.	The system of vectors $\{(1,1,2),(0,0,0),(1,2,4)$ is \qquad (A) linearly independent (B) Basis of R (C) linearly dependant (D) None of these C	C
19.	If the set contains \qquad then it is linearly dependant. (A) unit vector (B) zero vector (C) constant vector (D) None of these B: $v \in$	B
20.) Standard Basis of \mathbb{R}^{2} is \qquad (A) $\{1,0,(1,0)\}$ (B) $\{1,0,1,1\}$ (C) $\{1,0,0,1,0,0,0,0,1)\}$ (D) $\{1,0,0,1,0,1,(0,0,1)\}$ A	A
21.) If W is a subspace of a vector space $V(F)$ then $\frac{v}{w}=$ \qquad (A) $\{w+V: w \in W\}$ (B) $\{w V: w \in W\}$ (C) $\{v W: v \in V\}$ (D) $\{v+W: v \in V\}$	D

22.	If $V(F)$ is a vector space and S is non-empty subset of V then $L(L(S))=$ \qquad (A) V (B) S (C) $V(S)$ (D) $L(S)$	D
23.	Let $V(F)$ be a vector space and S be basis of V then $L(S)=$ \qquad (A) S (B) V (C) \varnothing (D) None of these B	B
24.	If F is field then $F x$ is \qquad vector space over F. (A) Alway s (B) May be (C) Never (D) None of these A	A
25.	If S is basis of $V(F)$ then number of elements in F is called \qquad (A) dimension of V (B) dimension of F (C) dimension of S (D) None of these D	D
26.	If S is basis of $V(F)$ then number of elements in V is called \qquad (A) dimension of V (B) dimension of F (C) dimension of S (D) None of these D	D
27.	If S is basis of (F) then number of elements in basis of V is called \qquad (A) dimension of V (B) dimension of F (C) dimension of S (D) None of these A	A
28.	If S is finite subset of vector space $V(F)$ such that $L S=V$ then Basis of V \qquad (A) does not exists (B) exists (C) Cannot say exists (D) None of these B	B
29.	If $V=W 1 \oplus W 2$ then $\operatorname{dim}(W 1 \cap W 2)$ is \qquad (A) zero (B) non-zero (C) not defined (D)Non of these	A

30.	If $A \cap B=\emptyset$ then $\operatorname{dim} A+B=$ \qquad $(\mathrm{A}) \operatorname{dim} A-\operatorname{dim} \quad(B)(\mathrm{B}) \operatorname{dim} A+\operatorname{dim} \quad(B)(\mathrm{C}) \operatorname{dim}(A B)$ (D) none of these B	B
31.	Dimension of a vector space R^{n} over R is \qquad (A) ∞ (B) 0 (C) 1 (D) $n \mathrm{D}$	D
32.	In an n-dimensional vector space, each set consisting of $(n+1)$ or more vectors is (A) a basis (B) linearly independent (C) linearly dependent (D) None of these C	C
33.	If $\operatorname{dim} V=n$ then the number of vectors in basis on V are \qquad (A) 0 (B) n (C) $k . n$ (D) ∞B	B
34.	Linear span of S is \qquad subspace of vector space V containing S. (A) Smallest (B) Largest (C) Empty (D) None of these A	A
35.	The system of three vectors $0,2,0,0,0,2,(2,0,0)$ is \qquad of $R^{3}(R)$. (A) linearly dependent set (B) Basis (C) not span set (D) None of these B	B
36.	If $(1,1,1)$ is linearly independent vector then the basis of $\mathbb{R}^{3}(\mathbb{R})$ that contains this vector is (A)($1,1,1$) , (1,0,1, $(2,2,2)$ (B) $(1,1,1),(1,0,1),(2,0,2$ (C) $(1,1,1),(0,0,1)$, $(0,1,0) \quad(D)(1,0,0),(0,0,1),(0,1,0)$	C
37.	If $(1,1)$ is linearly independent vector then the basis of $\mathbb{R} 2(\mathbb{R})$ that contains this vector is (A)(1,1), $(2,2),(3,2)$ (B) $(1,1,(0,1)$ $(C)(1,0),(3,1)$, (D) (1,0) , (0,1	B

38.	If W is subspace of a finite dimensional vector space V then, $\operatorname{dim} \frac{v}{w}=$ \qquad (A) $\operatorname{dim} V-\operatorname{dim}(W)$ (B) $\operatorname{dim} V+\operatorname{dim}(W)$ (C) $\operatorname{dim} W-\operatorname{dim}(V)$ (D) $\operatorname{dim}(V)$	A
39.	Standard basis of $R 4$ is \qquad (A) $(1,0,0,0),(0,1,0,0),(0,1,1,0),(0,0,0,1)$ (B) $(1,0,0,0),(0,0,1,0),(0,0,2,0)$, (1,1,0,0) (C) $1,0,0,0,1,1,0,0,(1,1,1,0),(1,0,0,1)$ (D) (0,0,0,1) , (0,1,0,0), (1,0,0,0), $(1,0,0,0)$	D
40.	The set of polynomials in $P 2[x], 1+x+2 x^{2} x 2,2-x-2 x^{2}, 4+5 x+x^{2}$ are \qquad (A) Linearly independent (B) Linearly dependant (C) All constants (D) None of these A	A
41.	The set of polynomials in $P 2[x], 1+x+2 x^{2} 2,2+3 x-x^{2}, 2+2 x+4 x^{2}$ are \qquad (A) Linearly independen (B) Linearly dependant (C) All constants (D) None of these B	B
42.	If V is a finite dimensional vector space and S, T are two finite subsets of V such that S spans V and T is linearly independent set then, (A) $O(S)=O(T)$ (B) $O(T) \leq O(S)$ (C) $O(S) \geq O(T)$ (D) None of these	B
43.	If S and T both are bases of a finite dimensional vector space $V(F)$ then, (A) $O(S)=O(T)$ (B) $O(T) \leq O(S)$ (C) $O(S) \geq O(T)$ (D) None of the	A

44.	If A and B are two subspaces of a finite dimensional vector space $V(F)$ then $\operatorname{dim}(A+B)+$ $\operatorname{dim} \square(A \cap B)=$ \qquad (A) $\operatorname{dim}(A)+\operatorname{dim}(B)$ (B) $\operatorname{dim} A-\operatorname{dim} B$ (C) $\operatorname{dim} A / \operatorname{dim} B$ (D) None of these A	A
45.	The system of three vectors (1,1,2),(0,1,1), (1,2,3) is \qquad set of $R^{3}(R)$ (A) linearly independent (B) linearly dependant (C) Basis (D) None of these B	B
46.	Let $V(F)$ be a vector space, a subset S of V is said to be basis if \qquad (A) S is linearly dependant and $L(S)=V$ (B) S is linearly independent and $L(S) \neq$ V (C) S is linearly dependant and $L(S) \neq V$ (D) None of these	D
47.	The co-ordinate vector of $v=((3,5,-2)$ with respect to standard basis is \qquad (A) $(-2,5,3)$ (B) $(3,5,-2)$ (C) $(-3,-5,2)$ (D) None of these	B
48.	If $\operatorname{dim} V=n$ and $S=\{v 1, v 2, \ldots, v n\}$ is linearly independent set then, S is \qquad of V. (A) Basis (B) linearly dependent set (C) superset (D) None of these A	A
49.	Row Echelon form of matrix $A=1123$ is \qquad (A)) $\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$ (B)) $\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right]$ (C) $\left.\left\lvert\, \begin{array}{ll}1 & 1 \\ 0 & 4\end{array}\right.\right\rceil$ (D) $\left.\left\lvert\, \begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right.\right\rceil$	C

50.	Row Echelon form of matrix $A=1-122$ is \qquad (A) $\left[\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right]$ (B) $\left[\begin{array}{cc}1 & -1 \\ 0 & 4\end{array}\right]$ (C)) $\left[\begin{array}{ll}1 & 1 \\ 0 & 4\end{array}\right]$ (D) $\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$	B
51.	Let T be linear transformation on \mathbb{R}^{3} defined by $T(x, y, z)=(3 x, x-y, 2 x+y+z)$ Then, \qquad (A) T is invertible (B) T is not invertible (C) T is constant (D) None of these A	A
52.	Let, $T: U F \longrightarrow V(F)$ be a linear transformation then ker (V) is \qquad (A) subspace of $U(F)$ (B) subspace of $V(F)$ (C) Not defined (D) None of these C	C
53.	If $T: V \rightarrow V$ is a linear transformation the (A) T is one-one (B) T is onto (C) $T u+v=T u+T(v)$ (D) All of above C	C
54.	Let, $T: U F \longrightarrow V(F)$ be a linear transformation then Range (T) is \qquad (A) subspace of $U(F)$ (B) subspace of $V(F)$ (C) Not defined (D) None of these B	B
55.	Let $F: V \rightarrow W$ and $G: U \rightarrow V$ which of the following may not exists. (A) $F \circ G$ (B) $G \circ F$ (C) $2 F$ (D) $3 G$	B
56.	Let, $T: U F \longrightarrow V(F)$ be a vector isomorphism then, (A) $U \neq V$ (B) $\operatorname{dim} U=\operatorname{dim} V$ (C) $\operatorname{dim} U \neq \operatorname{dim}(V)$ (D) None of these	B

