	The Bodwad Sarvajanik Co-Op.	Education Society Ltd., Bodwad	
	Arts, Commerce and So	cience College Bodwad	
	Question Bank		
	Class:-TYBSc	Sem:-VI	
	Subject: Linear Algebra	Paper Name:- MTH 603	
G N	0		
Sr. No.	Ques	tions	Ans
1.	If V is a vector space over field F , then the el (A) scalars (C) rationals (B) vectors (D) unit	ements of V are called	В
2.) If V is a vector space over field F , then for X (A) Only i) is true (B) Only iI) is true (C) B		С
3.	If $V(F)$ is a vector space then $(V, +)$ is	Ring (D) None of these D	D
4.	A non-empty set V is be vector space then (A) $av = V$ (B) $av \notin V$ (C) $av \neq V$ (D) No		D
5.	{0} and (F) are subspaces of (A) no t (B) trivial (C) non-trivial (D) No		В
6.	If $U = (3,1,0,-4)$ and $V = (-1,2,1,4)$ be vector (A) $(5,4,2,1)$ (B) $(0,7,3,8)$ (C) $(1,-2,4)$		В

7.	If $U = (1,2,1,2)$ and $V = (0,1,-1,4)$ be vectors of R^4 (R) then $2U - V = $ (A) (2,3,3,0) (B) (0,-1,3,2) (C) (2,3,3,0) (D) (5,4,1,-4) A	A
8.	If $U = (2,1,3)$ and $V = (3,2,1)$ be vectors of R^3 (R) then $U + 2V = $ (A) (5,4,2) (B) (0,7,3) (C) (8,6,5) (D) (8,5,5)	D
9.	$U = \{ , b, c : a \ge b \}$ is of $R^3 R$. (A) subspace (B) scalar (C) not a subspace (D) None of these C	С
10.	Union of two subspaces is(A)subspace (B) Need not a subspace (C) always empty set (D) None of these	В
11.	If V is a vector space over F then $\{0\}$ is (A) linearly dependent (B) linearly independent (C) Scale (D) None of these A	A
12.	If V is a vector space over F and $v \in V$ then $\{v\}$ is linearly independent if (A) v =infinity (B) v is non zero (C) v is equal to zero (D) None of these B	В
13.	Superset of linearly dependent set is (A) linearly independent (B) linearly dependant (C) not defined (D) infinite set	В

14.	The system of vectors(1,1,2), (-1,2,3), (1,2,4) is(A) linearly independent (B) Basis of R 4 (C) linearly dependant (D) None of these	Α
15.	The system of vectors(2,1,2) , (-1,4,3 is (A) linearly independent (B) Basis of R 3 (C) linearly dependant (D) None of these A	A
16.	Let $S = \{ 2,3,1,1,3,5 \}$ then S is (A) Linearly independent set (B) Linearly dependant set (C) Basis (D) None of these B	В
17.	The system of two vectors (1,2), (2,4) is (A) linearly independent (B) Basis of R 4 (C) linearly dependant (D) None of these C	С
18.	The system of vectors{ (1,1,2), (0,0,0), (1,2,4) is (A) linearly independent (B) Basis of R (C) linearly dependant (D) None of these C	С
19.	If the set contains then it is linearly dependant. (A) unit vector (B) zero vector (C) constant vector (D) None of these B : $v \in$	В
20.) Standard Basis of \mathbb{R}^2 is (A) { 1,0 , (1,0)} (B) { 1,0 , 1,1 } (C) { 1,0,0 , 1,0,0 , 0,0,1)} (D) { 1,0,0 , 1,0, 1 , (0,0,1)} A	A
21.) If W is a subspace of a vector space $V(F)$ then $\frac{v}{w} =$ (A) $\{w+V:w\in W\}$ (B) $\{wV:w\in W\}$ (C) $\{vW:v\in V\}$ (D) $\{v+W:v\in V\}$	D

22.	If $V(F)$ is a vector space and S is non-empty subset of V then $L(L(S)) = $ (A) V (B) S (C) $V(S)$ (D) $L(S)$	D
23.	Let $V(F)$ be a vector space and S be basis of V then $L(S) = $ (A) S (B) V (C) \emptyset (D) None of these B	В
24.	If F is field then F x is vector space over F. (A) Alway s (B) May be (C) Never (D) None of these A	A
25.	If S is basis of $V(F)$ then number of elements in F is called (A) dimension of V (B) dimension of F (C) dimension of S (D) None of these D	D
26.	If S is basis of $V(F)$ then number of elements in V is called (A) dimension of V (B) dimension of F (C) dimension of S (D) None of these D	D
27.	If S is basis of (F) then number of elements in basis of V is called (A) dimension of V (B) dimension of F (C) dimension of S (D) None of these A	A
28.	If S is finite subset of vector space $V(F)$ such that L $S = V$ then Basis of V (A) does not exists (B) exists (C) Cannot say exists (D) None of these B	В
29.	If $V = W1 \oplus W2$ then dim $(W1 \cap W2)$ is(A) zero (B) non-zero (C) not defined (D)Non of these	A

	If $A \cap B = \emptyset$ then dim $A + B = \underline{\hspace{1cm}}$	В
	(A) dim A – dim (B) (B) dim A + dim (B) (C) dim (A B) (D) none of these B	
31.	Dimension of a vector space R^n over R is	D
	(A) ∞ (B) 0 (C) 1 (D) n D	
32.	In an n -dimensional vector space, each set consisting of $(n + 1)$ or more vectors is	С
	(A) a basis (B) linearly independent (C) linearly dependent (D) None of these C	
33.	If dim $V=n$ then the number of vectors in basis on V are (A) 0 (B) n (C) $k.$ n (D) ∞ B	В
34.	Linear span of S is subspace of vector space V containing S . (A) Smallest (B) Largest (C) Empty (D) None of these A	А
35.	The system of three vectors $0,2,0$, $0,0,2$, $(2,0,0)$ is of \mathbb{R}^3 (\mathbb{R}) . (A) linearly dependent set (B) Basis (C) not span set (D) None of these B	В
36.	If (1,1,1) is linearly independent vector then the basis of \mathbb{R}^3 (\mathbb{R}) that contains this vector is	С
	(A)(1,1,1), (1,0,1,(2,2,2) (B) (1,1,1), (1,0,1), (2,0,2 (C) (1,1,1), (0,0,1), (0,1,0) (D)(1,0,0), (0,0,1), (0,1,0)	
37.	If (1,1) is linearly independent vector then the basis of \mathbb{R}^2 (\mathbb{R}) that contains this vector is	В

38.	If W is subspace of a finite dimensional vector space V then, $dim \frac{v}{w} = $	Α
	(A) $\dim V - \dim (W)$ (B) $\dim V + \dim (W)$ (C) $\dim W - \dim (V)$ (D) $\dim (V)$	
39.	Standard basis of <i>R</i> 4 is (A) (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1) (B) (1,0,0,0), (0,0,1,0), (0,0,2,0), (1,1,0,0)	D
	(C) 1,0,0,0 , 1,1,0,0 , (1,1,1,0),(1,0,0,1) (D)(0,0,0,1) , (0,1,0,0), (1,0,0,0), (1,0,0,0)	
40.	The set of polynomials in $P2[x]$, $1 + x + 2x^2x + 2$, $2 - x - 2x^2$, $4 + 5x + x^2$ are (A) Linearly independent (B) Linearly dependent (C) All constants (D) None of these A	A
41.	The set of polynomials in $P2[x]$, $1+x+2x^22$, $2+3x-x^2$, $2+2x+4x^2$ are (A) Linearly independen (B) Linearly dependant (C) All constants (D) None of these B	В
42.	If V is a finite dimensional vector space and S , T are two finite subsets of V such that S spans V and T is linearly independent set then, (A) $O(S) = O(T)$ (B) $O(T) \le O(S)$ (C) $O(S) \ge O(T)$ (D) None of these	В
		1

44.	If A and B are two subspaces of a finite dimensional vector space $V(F)$ then dim($A + B$) + dim $(A \cap B) =$	Α
	(A) $\dim \mathbb{G}(A) + \dim \mathbb{G}(B)$ (B) $\dim A - \dim B$ (C) $\dim A / \dim B$ (D) None of these A	
45.	The system of three vectors $(1,1,2)$, $(0,1,1)$, $(1,2,3)$ is set of \mathbb{R}^3 (\mathbb{R}) (A) linearly independent (B) linearly dependant (C) Basis (D) None of these B	В
46.	Let $V(F)$ be a vector space , a subset S of V is said to be basis if (A) S is linearly dependant and $L(S) = V$ (B) S is linearly independent and $L(S) \neq V$ (C) S is linearly dependant and S (D) None of these	D
47.	The co-ordinate vector of $v = ((3, 5, -2))$ with respect to standard basis is(A) $(-2, 5, 3)$ (B) $(3, 5, -2)$ (C) $(-3, -5, 2)$ (D) None of these	В
48.	If dim $V = n$ and $S = \{v1, v2,, vn\}$ is linearly independent set then, S is of V . (A) Basis (B) linearly dependent set (C) superset (D) None of these A	Α
49.	Row Echelon form of matrix $A = 1 \ 1 \ 2 \ 3$ is (A) $\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 1 \\ 0 & 4 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$	С

50.	Row Echelon form of matrix $A = 1 - 1 2 2$ is $ (A) \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} $ $ (B) \begin{bmatrix} 1 & -1 \\ 0 & 4 \end{bmatrix} $ $ (C)) \begin{bmatrix} 1 & 1 \\ 0 & 4 \end{bmatrix} $ $ (D) \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} $	В
51.	Let T be linear transformation on \mathbb{R}^3 defined by $T(x, y, z) = (3x, x - y, 2x + y + z)$ Then,	A
52.	Let, $T:UF \to V(F)$ be a linear transformation then ker (V) is (A) subspace of $U(F)$ (B) subspace of $V(F)$ (C) Not defined (D) None of these C	С
53.	If $T: V \to V$ is a linear transformation the (A) T is one-one (B) T is onto (C) T $u + v = T$ $u + T(v)$ (D) All of above C	С
54.	Let, $T:UF \longrightarrow V(F)$ be a linear transformation then Range (T) is (A) subspace of $U(F)$ (B) subspace of $V(F)$ (C) Not defined (D) None of these B	В
55.	Let $F: V \to W$ and $G: U \to V$ which of the following may not exists. (A) $F \circ G$ (B) $G \circ F$ (C) $2F$ (D) $3G$	В
56.	Let, $T:UF \longrightarrow V(F)$ be a vector isomorphism then, (A) $U \neq V$ (B) dim $U = \dim V$ (C) dim $U \neq \dim U(V)$ (D) None of these	В