	The Bodwad Sarvajanik Co-Op. Education Society Ltd., Bodwad Arts, Commerce and Science College Bodwad Question Bank	
Sr.No.	Questions	Ans
1)	The Wronkian of the function $y_{1}=\sin x$ and $y_{2}=\sin x-$ $\cos x$ is.... (A) 0 (B) 1 (C) $\sin ^{2} x$ (D) $\cos ^{2} x$	B
2)	The Wornkian of the function $y_{1}=x$ and $y_{2}=2 x$ is \qquad (A) 0 (B) 1 (C) $\sin ^{2} x$ (D) $\cos ^{2} x$	A
3)	The Wronskian of the function $y_{1}=3 x$ and $y_{2}=2 x$ is (A) 0 (B) 1 (C) $\sin ^{2} x$ (D) $\cos ^{2} x$	A
4)	The Wronkian of the function $y_{1}=x^{2}$ and $y_{2}=2 x$ is (A) 0 (B) 1 (C) $-3 x^{2}$ (D) 3 x	C
5)	The Wronskian of the function $y_{1}=x^{2}$ and $y_{2}=7 x^{2}$ is (A) 0 (B) 1 (C) $-3 x^{2}$ (D) $3 x$	A
6)	The Wronskian of the function $y_{1}=x^{3}$ and $y_{2}=2 x^{3}$ is (A) 0 (B) 1 (C) $-3 x^{2}$ (D) $3 x$	A
7)	The functions $1, x, x^{2}$ are \qquad (A) Linearly Independent (B) Linearly Dependent (C) Linearly Independent and Linearly Dependent (D) None of these	B

8)	The functions $y_{1}=x$ and $y_{2}=2 x$ are (A) Linearly Independent (B) Linearly Dependent (C) Linearly Independent and Linearly Dependent (D) None of these	B
9)	The functions $y_{1}=3 x$ and $y_{2}=2 x$ are (A) Linearly Independent (B) Linearly Dependent (C) Linearly Independent and Linearly Dependent (D) None of these	B
10)	The functions $y_{1}=x^{2}$ and $y_{2}=3 x$, where $x \neq 0$ are (A) Linearly Independent (B) Linearly Dependent (C) Linearly Independent and Linearly Dependent (D) None of these	A
11)	The functions $y_{1}=x^{2}$ and $y_{2}=7 x^{2}$ are \qquad (A) Linearly Independent (B) Linearly Dependent (C) Linearly Independent and Linearly Dependent (D) None of these	B
12)	The functions $y_{1}=x^{3}$ and $y_{2}=2 x^{3}$ are \qquad (A) Linearly Independent (B) Linearly Dependent (C) Linearly Independent and Linearly Dependent (D) None of these	B
13)	The Wronskian of $e^{2 x} \cos ^{3} x$ and $e^{2 x} \sin ^{3} x$ is \qquad (A) $3 e^{4 x}$ (B) 0 (C) $3 e^{2 x}$ (D) $2 e^{3 x}$	A
14)	Two non-zero functions $f_{1}(x)$ and $f_{2}(x)$ of the differential equation are linearly Dependent iff their Wronskian is..... $\forall x \in[a, b]$	A

	(A) zero (B) non-zero (c) non vanishing (D) none of these	
15)	The Wronskian of functions e^{x} and $x e^{x}$ is \qquad (A) e^{x} (B) $e^{2 x}$ (C) $x e^{x}$ (D) $e^{3 x}$	B
16)	If S is defined by the rectangle $\|x\| \leq a,\|y\| \leq b$ then the functions $f(x, y)=x \sin y+y \cos x$ satisfy the Lipschitz condition and Lipschitz constant $\mathrm{K}=$ \qquad (A) a (B) -1 (C) $a+1$ (D) b	C
17)	Every continuous function \qquad satisfy a Lipschitz condition on a rectangle (A) may (B) must (C) may not (D) none of these	C
18)	The wronskian of $y_{1}(x)$ and $y_{2}(x)$ is denoted by $\mathrm{W}\left(y_{1}, y_{2}\right)$ and is defined as (A) $\mathrm{W}\left(y_{1}, y_{2}\right)=\left\|\begin{array}{ll}y_{1} & y_{2} \\ y_{2} & y_{1}\end{array}\right\|$ (B) $\mathrm{W}\left(y_{1} y_{2}\right)=\left\|\begin{array}{ll}y_{1} & y_{2} \\ x_{2} & x_{1}\end{array}\right\|$ (C) $\mathrm{W}\left(y_{1}, y_{2}\right)=\left\|\begin{array}{ll}x_{1} & x_{2} \\ y_{2} & y_{1}\end{array}\right\|$ (D) $\mathrm{W}\left(y_{1}, y_{2}\right)=\left\|\begin{array}{ll}y_{1} & y_{2} \\ y_{1} & y_{2}\end{array}\right\|$	D
19)	A function $f(x, y)$ is said satisfy Lipschitz's condition in a region D in XY plane if there exists a positive constant K such that $\left\|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right\| \leq$ \cdots whenever the points (x, y_{1}) and $\left(x, y_{2}\right)$ both lie in D . (A) K $\left\|x_{1}-x_{2}\right\|$ (B)K $\left\|y_{1}-x_{2}\right\|$ (C) K $\left\|y_{2}-y_{1}\right\|$ (D) K $\left\|x_{1}-y_{2}\right\|$	C

20)	Two solutions $y_{1}(x)$ and $y_{2}(x)$ of $a_{0} y^{11}+a_{1} y^{1}+a_{2} y=$ $0, a_{0} \neq 0$ on (a,b) are Linearly independent if and only if their wronskian is \qquad at some point $x_{0} \in(a, b)$ (A) zero (B) not zero (C) may or may not zero (D) identically zero	B
21)	If $\mathrm{W}\left(y_{1}, y_{2}\right)=\left\|\begin{array}{cc}2 x^{2} & x \\ 4 x & 1\end{array}\right\|=A$ then valve of A is (A) $-2 x^{2}$ (B) $4 x^{2}$ (C) $3 x^{2}$ (D) 2x	A
22)	If $\mathrm{W}\left(y_{1}, y_{2}\right)=\left\|\begin{array}{cc}2 x^{2} & 3 x \\ 4 x & 3\end{array}\right\|=A$ then valve of A is (A) $-6 x^{2}$ (B) $4 x^{2}$ (C) $3 x^{2}$ (D) $2 x$	A
23)	If $\mathrm{W}\left(y_{1}, y_{2}\right)=\left\|\begin{array}{cc}3 x & x \\ 3 & 1\end{array}\right\|=A$ then valve of A is (A) $-2 x^{2}$ (B) $4 x^{2}$ (C) $3 x^{2}$ (D) 0	D
24)	If $\mathrm{W}\left(y_{1}, y_{2}\right)=\left\|\begin{array}{cc}4 x & x \\ 3 & 1\end{array}\right\|=A$ then valve of A is (A) $-6 x^{2}$ (B) $4 x^{2}$ (C) $3 x^{2}$ (D) 0	A
25)	If $\mathrm{W}\left(y_{1}, y_{2}\right)=\left\|\begin{array}{cc}4 x & x \\ 4 & 1\end{array}\right\|=A$ then valve of A is (A) $-2 x^{2}$ (B) $4 x^{2}$ (C) $3 x^{2}$ (D) 0	D
26)	If $y_{1}(\mathrm{x})$ and $y_{2}(x)$ are any two solutions of $a_{0}(x) y^{/ /}(x)+$ $a_{1}(\mathrm{x})+a_{2}(x) y(x)=0$, then the linear combination	C

	$C_{1} y_{1}(x)+C_{2} y_{2}(x)$, where C_{1} and C_{2} are constants, is of the given equation. (A) not solution (B) may or may not have solution (C) solution (D) none of these	
27)	The functions x^{2}, e^{x}, e^{-x} are linearly \qquad if $x= \pm \sqrt{2}$ (A) independent (B) dependent (C) congruent (D) none of these	B
28)	If S is defined by the rectangle $\|x\| \leq a,\|y\| \leq b$ then the Lipschitz constant for Function $\mathrm{f}(\mathrm{x}, \mathrm{y})=x^{2}+y^{2}$ is...... (A) b (B) a (C) 2 b (D) 2 a	C
29)	The Wronskian of $\sin x$ and $\cos x$ is (A) 0 (B) 1 (C) -1 (D) 3	C
30)	Taking first and second ratio of simultaneously D.E. $\frac{X d X}{y^{2} Z}=$ $\frac{d y}{x z}=\frac{d z}{y^{2}}$ the Solution of D.E is (A) $x^{3}+2 y^{3}=c_{1}$ (B) $x^{3}-y^{3}=c_{1}$ (C) $x^{3}+4 y^{3}=C_{1}$ D) $4 x^{2}=5 y^{2}$	B
31)	One solution of the simultaneous D.E. $\frac{d x}{y z}=\frac{d y}{z x}=\frac{d z}{x y}$ is (A) $x^{2}=y^{2}$ (B) $x^{2}-y^{2}=c$ (C) $x^{2}-3 y^{2}=c$ (D) $4 x^{2}=5 y^{2}$	B
32)	Taking first and second fraction of simultaneous D.E $\frac{d X}{1}=\frac{d y}{2}=\frac{d z}{5 z+\tan (y-2 x)}$ is (A) $x y=c$ (B) $x^{2}+z^{2}=0$ (c) $x=2 y+c$ (D) $y=2 x+c$	D
33)	Taking first and third ratio of simultaneously D.E. $\frac{X d X}{y^{2} z}=\frac{d Y}{X Z}=\frac{d Z}{y^{2}}$ the solution of D.E is (A) $x^{2}+z^{2}=c$ (B) $x^{2}-z^{2}=c$ (C) $x^{2}+3 y^{2}=c$ (D) $4 x^{2}+5 y^{2}=c$	B
34)	Solution of simultaneously D.E $d x=d y=d z$ is	C

	(A) $(x-y)(y+z)=c$ (B) $(x+y)(y-z)=c$ (C) $(x-y)(y-z)=c$ (D) $(x+2 y)(y+z)=c$	
35)	Equating the first and second fraction of simultaneous D.E. $d x=d y=d z$ then Solution is (A) $(x-y)(y+z)=c$ (B) $y-z=c$ (C) $x-y=c$ (D) $x+2 y)(y+z)=c$	C
36)	Equating the second and third fraction of simultaneous D.E $d x=d y=d z$ then solution Is (A) $(x-y)(y+z)=c$ (B) $y-z=c$ (C) $x-y=c$ (D) $(x+2 y)(y+z)=$	B
37)	Equating the first and third fraction of simultaneous D.E. $d x=d y=d z$ then solution is (A) $(x-y)(y+z)=c$ (B) $x-z=c$ (C) $x-y=c$ (D) $(x+2 y)(y+z)=$ c	B
38)	Which of the following set of multipliers used to solve simultaneously differential equation $\frac{d X}{Z(X+Y)}=\frac{d Y}{Z(X-Y)}=\frac{d Z}{X^{2}+Y^{2}}$ (A) $x, y,-z$ and $x,-y,-z$ (B) $-x, y, z$ and $x,-y,-z$ (C) $y, x,-z$ and $x,-y,-z$ (D) y, x, z and $x, y,-z$	C
39)	Equating first and second ratio of simultaneous differential equation $\frac{d X}{x}=\frac{d y}{y}=\frac{d Z}{z}$, then $\log x=$ (A) $\log y+c$ (B) $\log c y+c$ (C) $\log (x+y)+c$ (D) $\log \left(\frac{x}{y}\right)+c$	A
40)	Equating first and second ratio of simultaneous differential equation	B

	$\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z}$, then $\log x=$ (A) logy (B) logcy (C) $\log (x+y)$ (D) $\log \left(\frac{x}{y}\right)$	
41)	Choosing multipliers $\mathrm{a}, \mathrm{b}, 1$ for simultaneous differential equation $\frac{d X}{y}=\frac{d y}{-X}=\frac{d z}{b X-a y}$, then we get (A) $a X+b y=C_{1}$ (B) $X+Y+Z=C_{1}$ (C) $a X-y+$ $Z=C_{1} \text { (D) } a X+b y+Z=C_{1}$	D
42)	Which of the following set of multipliers for simultaneous differential equation $\frac{d X}{m z-n y}=\frac{d y}{n x-l z}=$ $\frac{d z}{l y-m x}$ (A) $x, y-z$ and $1,0,0$ (B) $-x, y, z$ and $l,-m,-n$ (C) $y, x,-z$ and $1,1,1$ (D) x, y, z and l, m, n	D
43)	If $\frac{d x}{P}+\frac{d y}{Q}+\frac{d z}{R}=\frac{A}{l P+m Q+n R}$, then $A=$ (A) $l d x+m d y+n d z$ (B) $m d x+l d y+n d z$ (C) $l d x-m d y+n d z$ (D) $l d x+m d y-n d z$	A
44)	If $\frac{d x}{P}+\frac{d y}{Q}+\frac{d z}{R}=\frac{x d x+y d y+z d z}{A}$, then $A=$ (A) $x P+y Q+z R$ (B) $x P-y Q+z R$ (C) $x P+y Q-z R$ (D) $y P-x Q+z R$	A

45)	The solution of simultaneous differential equation $\frac{d X}{a}=\frac{d y}{a}=d Z$ is (A) $(x-a y)(y+z)=c$ (B) $(x+a y)(y-z)=c$ (C) $(x-y)(y-a z)=c$ (D) $(x+a y)(y+a z)=$ c	C
46)	Taking first and second ratio of simultaneous D.E. $\frac{d X}{x y}=$ $\frac{d y}{y^{2}}=\frac{d z}{z x y-2 x^{2}}$ is (A) $x y=c$ (B) $x^{2}+z^{2}=0$ (C) $x-y=c$ (D) $\frac{d x+d y}{2+x+y}$	D
47)	Using multipliers $1,1,0$ to $\frac{d X}{1+y}=\frac{d y}{1+x}=\frac{d z}{z}$ then each fraction is equal to (A) $\frac{d X+d Z}{2+x+z}$ (B) $\frac{d x+d y}{1+x+y}$ (C) $\frac{d X+d y}{2+y}$ (D) $\frac{d X+d y}{2+x+y}$	D
48)	One solution of the simultaneous D.E $\frac{d X}{y z}=\frac{d y}{z x}=\frac{d z}{x y}$ is (A) $x^{2}-z^{2}=c$ (B) $x^{2}+z^{2}=0$ (C) $x^{2}-3 y^{2}=0$ (D) $x^{2}=5 y^{2}+2$	A
49)	Which of the following is true in the Pfaffian different equation $x d x+y d y+z d z=0$ (A) $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ (B) $\frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}$ (C) $\frac{\partial R}{\partial y}=\frac{\partial Q}{\partial Z}$ (D) All above	D
50)	If P, Q, R are homogeneous function of x, y, z of same degree n in Pfaffian	B

	Differential equation $P(x, y, z) d x+Q(x, y, z) d y+$ $R(X, y, z) d z=0$ then it is called as..... (A) non-homogeneous equation (B) homogeneous equation (C) may be homogeneous or non- homogeneous equation (D) none of these	
51)	The valve of $\frac{\partial R}{\partial x}$ in the differential equation $y z d X+$ $z X d y+X y d z=0$ is...... (A) x (B) z (C) y (D) $x y$	C
52)	The value of Q in the differential equation $(Y Z+x y z) d x+(Z X+X Y Z) d y+(X y+X y z) d z=0$, $\mathrm{i}, \mathrm{e} P d x+Q d y+R d z=0$ is (A) $y z+x y z$ (B) $z x+x y z$ (C) $x y+x y z$ (D) $x y+x y z+y z$	B
53)	The valve of $\frac{\partial Q}{\partial x}$ in the differential equation $(a+z) y d X+$ $(a+z) x d y+x y d z=0$ is.... (A) $a+z$ (B) $a-z$ (C) 1 (D) X	A
54)	The differential equation $(Y+Z) d x+(z+X) d y+$ $(X+Y) d z=0, \mathrm{i}, \mathrm{e}$ $P d x+Q d y+R d z=0 \text { is }$ (A) exact (B) not exact (C) may or may not be exact (D) none of these	A
55)	The differential equation $(y+z) d x+(z+X) d y+$ $(X+Y) d z=0$,i.e $P d X+Q d y+R d z=0$ then valve of P is..... (A) $2 x^{2} y$ (B) $3 x y^{2}$ (C) $y+z$ (D) x^{3}	C
56)	Which of the following is true in the Pfaffian differential equation $(y+z) d x+(z+x) d y+(x+y) d z=0$ (A) $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ (B) $\frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}$	D

	$\begin{array}{ll}\text { (C) } \frac{\partial R}{\partial y}=\frac{\partial Q}{\partial Z} & \text { (D) All above }\end{array}$	
57)	The Pfaffian differential equation $(x-y) d x-x d y+$ $z d z=0$ is (A) homogeneous equation (B) non- homogeneous equation (C) may be homogeneous or non- homogeneous equation (D) none of these	A
58)	The differential equation $(y+z) d x+d y+d z=0$ is \qquad (A) integrable (B) not integrable (C) may or may not integrable (D) none of these	A
59)	The differential equation $2 x^{2} y d x+3 x y^{2} d y+z d z=$ 0 ,i,e. $P d x+Q d y+R d z=0$ then valve of P is (A) $2 x^{2} y$ (B) $3 x y^{2}$ (C) z (D) x^{3}	A
60)	The differential equation $2 x^{2} y d x+3 x y^{2} d y+z d z=0$, i.e. $P d x+Q d y+R d z=0$ then valve Q is (A) $2 x^{2} y$ (B) $3 x y^{2}$ (C) z (D) x^{3}	B
61)	The differential equation $2 x^{2} y d x+3 x y^{2} d y+z d z=0$, i.e $P d x+Q d y+R d z=0$ then valve of R is (A) $2 x^{2} y$ (B) $3 x y^{2}$ (C) z (D) x^{3}	C
62)	The differential equation $2 x^{2} y d x+3 x y^{2} d y+z d z=0$, i.e $P d x+Q d y+R d z=0$ then value of $\frac{\partial P}{\partial y}$ is	A

	(A) $2 x^{2}$ (B) $3 y^{2}$ (C) z (D) x^{3}	
63)	The differential equation $2 x^{2} y d x+3 x y^{2} d y+z d z=0$, i.e. $P d x+Q d y+R d z=0$ then valve of $\frac{\partial Q}{\partial x}$ is (A) $2 x^{2}$ (B) $3 y^{2}$ (C) z (D) x^{3}	B
64)	The differential equation $2 x^{2} y d x+3 x y^{2} d y+z d z=0$, i,e. $P d x+Q d y+R d z=0$ then valve of $\frac{\partial R}{\partial x}$ is (A) $2 x^{2}$ (B) $3 y^{2}$ (C) z (D) 0	D
65)	The differential equation $2 x^{2} y d x+3 x y^{2} d y+z d z=$ 0 , i,e $P d x+Q d y+R d z=0$ then of $\frac{\partial P}{\partial z}$ is $\ldots .$. (A) $2 x^{2}$ (B) $x^{2} z-y^{3}$ (C) $3 x y^{2}$ (D) x^{3}	D
66)	The differential equation $\left(x^{2} z-y^{3}\right) d x+3 x y^{2} d y+$ $x^{3} d z=0$,, i.e $P d x+Q d y+R d z=0$ then valve of R is (A) y^{3} (B) $x^{2} z-y^{3}$ (C) $3 x y^{2}$ (D) x^{3}	D
67)	The valve of $\frac{\partial P}{\partial y}$ in the differential equation $(y-Z)(Y+Z-2 x) d x+(z+x-2 y) d y+(x-$ $y)(x+y-2 z) d z=0$ is (A) $2 y-2 x$ (B) $2 x-3 y$ (C) $x-z$ (D) $2 z+3 y$	A

68)	The differential equation $P d x+Q d y+R d z=0$ is If it satisfies the conditions $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial X}, \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}$ and $\frac{\partial R}{\partial X}=\frac{\partial P}{\partial z}$ (A) exact (B) not exact (C) may or may not be exact (D) none of these	A
69)	An equation of the form $P d x+Q d y+R d z=0$, where P, Q, R are function of x, y (A) simultaneous differential equation (B) Pfaffian differential equation (C) linear equation (D) non- linear equation	B
70)	Which of the following is true in the Pfaffian differential Equation $(y+z) d x+d y+d z=0$ (A) $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ (B) $\frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}$ (C) $\frac{\partial R}{\partial y}=\frac{\partial Q}{\partial z}$ (D) All above	C
71	Which of the following set of multipliers for simultaneous differential equation $\frac{d X}{x(y-z)}=\frac{d y}{y(z-x)}=$ $\frac{d z}{z(x-y)}$ (A) $x, y-z$ and $1,0,0$ (B) $1 / x, 1 / y, 1 / z$ and $1,1,1$ (C) $y, x,-z$ and $1,1,1$ (D) x, y, z and l, m, n	B
72	$x d y+y d x=d(x y)$ A)True B)False	A
73	$[x d y-y d x] /\left(x^{2}\right)=d(x / y)$ A)True B)False	A
74	$[x d y-y d x] /(x y)=d(\log (x / y))$	A

	A)True B)False	
75	Xdy-ydx=d(xy) A)True B)False	B
76	[$x d y-y d x] /\left(x^{2}\right)=d(y / x)$ A)True B)False	B
77	$[x d y-y d x] /(x y)=d((x / y))$ A)True B)False	B
78	$[x d y-y d x] /(x y)=d(\log (y / x))$ A)True B)False	B
79	$[x d y-y d x] /\left(x^{2}+y^{2}\right)=d\left(\tan ^{(-1)}(y / x)\right)$ A)True B)False	A
80	$[x d y-y d x] /\left(x^{2}+y^{2}\right)=d\left(\tan ^{(-1)}(x / y)\right)$ A)True B)False	B
81	The differential equation $P d x+Q d y+R d z=0$ is exact then it is integrable. A)True B)False	A
82	The differential equation $P d x+Q d y+R d z=0$ is exact then it is not integrable. A)True B)False	B
83	The functions $1, x, 2 x$ are (A) Linearly Independent (B) Linearly Dependent (C) Linearly Independent and Linearly Dependent (D) None of these	B
84	Which of the following set of multipliers for simultaneous differential equation $\frac{y z d x}{(y-z)}=\frac{z x d y}{(z-x)}=\frac{x y d z}{(x-y)}$ (A) $x, y-z$ and $1,0,0$ (B) $1 / x, 1 / y, 1 / z$ and $1,1,1$ (C1/yz, $1 / z x, 1 / x y$ and $1,1,1$	C

	(D) x, y, z and l, m, n	
85	Which of the following set of multipliers for simultaneous differential equation $\frac{a d x}{b c(y-z)}=\frac{b d y}{c a(z-x)}=$ $\frac{c d z}{a b(x-y)}$ (A) $a x, b y, c z$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ (B) $1 / x, 1 / y, 1 / z$ and $1,1,1$ (C1/yz, 1/zx, 1/xy and 1,1,1 (D) x, y, z and l, m, n	A
86	Which of the following set of multipliers for simultaneous differential equation $\frac{d x}{x\left(2 y^{4}-z^{4}\right)}=\frac{d y}{y\left(z^{4}-z x^{4}\right)}=\frac{d z}{z\left(x^{4}-y^{4}\right)}$ (A) $1 / x, 1 / y, 2 / z$ and x^{3}, y^{3}, z^{3} (B) $1 / x, 1 / y, 1 / z$ and $1,1,1$ (C1/yz, 1/zx, 1/xy and 1,1,1 (D) x, y, z and l, m, n	A
87	Which of the following set of multipliers for simultaneous differential equation $\frac{d x}{x\left(y^{2}-z^{2}\right)}=\frac{d y}{-y\left(z^{2}+x^{2}\right)}=\frac{d z}{z\left(x^{2}+y^{2}\right)}$ (A) $-1 / x, 1 / y, 1 / z$ and x, y, z (B) $1 / x, 1 / y, 1 / z$ and $1,1,1$	A

	(C1 $/ y z, 1 / z x, 1 / x y$ and 1,1,1 (D) x, y, z and l, m, n	
88	The functions cos2x,sin2x are (A) Linearly Independent (B) Linearly Dependent (C) Linearly Independent and Linearly Dependent (D) None of these	A
89	The functions cos2x,4cos2x are (A) Linearly Independent (B) Linearly Dependent (C) Linearly Independent and Linearly Dependent (D) None of these	B
90	The functions $x^{2}, \mathrm{e}^{\mathrm{x}}, \mathrm{e}^{4 x}$ are (A) Linearly Independent (B) Linearly Dependent (C) Linearly Independent and Linearly Dependent (D) None of these	A
91	The functions Sin2x,4Sin2x are (A) Linearly Independent (B) Linearly Dependent (C) Linearly Independent and Linearly Dependent (D) None of these	B
92	In variation parameter method for second order DEq we have to assume that y=Au+BV A)True B)False	A
93	In variation parameter method for second order DEq is useful for finding Particular Integral A)True B)False	A
Forward differential operator Δ is defined as $\Delta f(x)=$ $f(x+h)$ - $f(x)$	A	

	A)True B)False	
95	Forward differential operator Δ is defined as $\Delta=E-1$. A)True B)False	A
96	Operator Ef(x) $\mathrm{f}(\mathrm{x}+\mathrm{h})$ A)True B)False	A
97	Operator E A)True B)False	$\mathrm{f}(\mathrm{x}+2 \mathrm{~h})$
98	Forward differential operator Δ is defined as $\Delta=E+1$. A)True B)False	B
99	$\mathrm{E}^{3} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}+3 \mathrm{~h})$ A)True B)False	A
100	$\mathrm{E}^{3} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}$-3h) A)True B)False	B
101	A)True B)False $\quad \Delta^{2}=E^{2}-2 E+1$.	A

