The Bodwad Sarvajanik Co-Op. Education Society Ltd., Bodwad

Arts, Commerce and Science College, Bodwad.

Question Bank

Class:- S.Y. B.Sc.	Sem.:-IV
Subject:- Physics	Paper Name:- Optics and Laser

- 1. Which of the following is the combination that is used in the formation of achromatic lenses?
 - a. 1 convex and 1 plane mirror
 - b. 2 convex lenses
 - c. 1 convex and 1 concave lens
 - d. 2 concave lenses
- 2. How does magnifying power change for an objective lens if the focal length of the objective lens is increased?
 - a. The microscope will decrease but for the telescope, it will increase
 - b. The microscope will increase but for the telescope, it decreases
 - c. The microscope and telescope will increase
 - d. The microscope and telescope will decrease
- 3. What is the power of the combination of lenses, if two thin lenses of focal length f_1 and f_2 are in contact and coaxial?
 - **a.** f1-f2/f1f2
 - **b.** f2f1
 - c. $\sqrt{f_{1/f_2}}$
 - d. f1+f2/f1f2
- 4. The image formed by the convex mirror is 1n times the object and has a focal length f. What is the distance of object from the mirror?
 - a. (n + 1)f
 - b. (n 1)f
 - c. (n+1n)f
 - d. (n-1n)f
- 5. Rainbow is an example of which phenomenon?
 - a. Refraction and scattering
 - b. Refraction and total internal reflection
 - c. Dispersion and reflection
 - d. Dispersion and total internal reflection

- 6. Lens is made up of.....
 - a. Glass or transparent Plastic
 - b. Wood
 - c. Metal
 - d. Opaque plastic
- 7. The equivalent focal length (f) for two thin lenses separated by distance 'X' is given by...

a.
$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_1} + \frac{x}{f_1 f_2}$$

b. $\frac{1}{f} = \frac{1}{f_1} - \frac{1}{f_1} - \frac{x}{f_1 f_2}$
c. $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_1} - \frac{x}{f_1 f_2}$
d. $\frac{1}{f} = \frac{1}{f_1} - \frac{1}{f_1} + \frac{x}{f_1 f_2}$

8. Power of lens is

- a. Inversely proportional to 1/f
- b. Directly proportional to f
- c. Independent of f
- d. Inversely proportional to f
- 9. When two thin lenses are put in contact the focal length of combination is_____
 - a. $f = \frac{f_1 f_2}{f_1 f_2}$ b. $f = \frac{f_1 - f_2}{f_1 + f_2}$ c. $f = \frac{f_1 + f_2}{f_1 - f_2}$
 - $d. \quad f = \frac{f1f2}{f1+f2}$

10. Spherical aberration arises due to_____

- a. Meeting of marginal rays and paraxial rays at same point
- b. Failure of meeting of marginal rays and paraxial rays at same point
- c. Detective material use to manufacture the lens
- d. None of these.

11. For cross lens, $\frac{R1}{R2}$

a.
$$\frac{1}{6}$$

b. $-\frac{1}{6}$
c. $\frac{1}{9}$

d.
$$-\frac{1}{9}$$

12. The condition for achromatism of two thin lenses of same material separated by finite distance "X" is...

a.
$$x = \frac{f1-f2}{2}$$

b.
$$\frac{w1f2+w2f1}{w1+w2}$$

c.
$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{x}{f_1 f_2}$$

d. $\frac{1}{f_1} + \frac{1}{f_2} = 0$

- 13. Intensity of light at a point is directly proportional to_____
 - a. Amplitude (a)
 - b. [Amplitude(a)]²
 - c. Wavelength (λ)
 - d. $(\lambda)^2$
- 14. For constructive interference pattern, the path difference between two monochromatic light waves should be _____
 - a. $n \lambda (2n+1) \lambda$
 - b. $(2n+1) \lambda/2$
 - c. $n\lambda/2$
 - d. $n\lambda$
- 15. To get bright fringes in the interference pattern of the reflected system from parallel sided thin film, the path difference must be_____
 - a. Odd multiple of λ
 - b. Odd multiple of $\lambda/2$
 - c. Even multiple of $\lambda/2$
 - d. Even multiple of λ
- 16. Newton's ring are examples of _____
 - a. Fringes of equal inclination
 - b. Fringes of unequal thickness
 - c. Fringes of unequal inclination
 - d. Fringes of unequal thickness
- 17. Fringes obtained in wedge shaped thin film are____

- a. quare
- b. Straight
- c. Elliptical
- d. Circular
- 18. The phenomenon of bending of light round the corners and edges of an obstacle to spread light waves into a geometric shadow of object is called......
 - a. Polarization
 - b. Interference
 - c. Scattering
 - d. Diffraction
- 19. In Fresnel type diffraction pattern either source of light or screen or both are at distance from the obstacle.
 - a. Finite
 - b. Infinite
 - c. Zero
 - d. None of above
- 20. In Fraunhofer diffraction the incident and diffracted wave fronts are.....
 - a. Not plane
 - b. Spherical
 - c. Cylindrical
 - d. Plane
- 21. In Fresnel diffraction the incident and diffracted wave fronts are.....
 - a. Plane
 - b. Circular
 - c. Elliptical
 - d. Divergent
- 22. In fresnel's half period zone theory, radii of half period zones are proportional to the square root of the natural number, while area of each zone is....
 - a. Zero
 - b. One
 - c. Constant
 - d. None of the above

23. The Fraunhofer diffraction the centre of diffraction pattern is always.....

- a. Dark
- b. Bright
- c. Bright or dark
- d. Blue
- 24. Diffraction occurs only if the size of obstacle is comparable with theof the light source used.
 - a. Velocity
 - b. Wavelength
 - c. Displacement
 - d. Acceleration
- 25. When light passes close to the edges of the aperture, there is a little deviation from its path called asof light.
 - a. Reflection
 - b. Rectilinear propagation
 - c. Interference
 - d. Polarization
- 26. The angle between plane of polarization and plane of vibration is.....
 - a. 360⁰
 - b. **90**⁰
 - c. 240⁰
 - d. 180⁰

27. Polarimeter is a device used to measureof a substance.

- a. Diffraction
- b. Polarization
- c. Interference
- d. Optical activity

28. μ =tan θ , where symbols have their usual meaning, is.....

- a. Malus law
- b. Law of refraction
- c. Brewster's law
- d. Law of polarization

29. In positive crystals.....

a. e-ray travels slower than o-ray

- b. e-ray travels faster than o-ray
- c. e-ray and o-ray travels with same speed
- d. e-ray and o-ray do not travel

30. Velocity of ordinary rays in negative crystal is then extra ordinary rays.

- a. Less
- b. Greater
- c. Equal
- d. Negligible

31. The specific rotation is given by S=....., where symbol have their usual meanings.

- a. <u>-01</u> С
- b. $\frac{\theta}{lc}$
- c. $\frac{lc}{\theta}$
- d. $\frac{1\theta}{c}$

32. Which of the following is a four level LASER?

- a. CO₂
- b. Ruby laser
- c. He-Ne laser
- d. None of these

33. What does the acronym LASER stand for?

- a. Light absorption by stimulated emission of radiation
- b. Light amplification by stimulated emission of radiation
- c. Light alteration by stimulated emission of radiation
- d. None of these

34. He-Ne laser is a type of

- a. Solid laser
- b. Liquid laser
- c. Gas laser

d. Diod laser

35. Laser is source of highly light.

- a. Coherent
- b. Divergent
- c. Non coherent
- d. none of these.

36. The He-Ne laser operates at a wavelength of.....

- a. 540nm
- b. **632nm**
- c. 690nm
- d. 717nm

37. Potential energy source for inducing fusion reaction is.....

- a. X-ray
- b. Laser
- c. Ultraviolet
- d. Microwave
- 38. Principle of laser is.....
 - a. Spontaneous absorption
 - b. Stimulated emission
 - c. Induced emission
 - d. Both b and c.

39. The population inversion process is observed due to the existence of.....

- a. Metastable state
- b. Excited state
- c. Ground state
- d. None of these
- 40. In lasing action, the spontaneous emission does not depend on
 - a. The number of atoms presents in the excited state
 - b. The intensity of incident light
 - c. Both a and b
 - d. None of these.

41. In lasing action, the light amplification is done due to.....

- a. Stimulated emission
- b. Spontaneous emission
- c. Absorption
- d. None of these.

42. Which of the following is not true for laser?

- a. Extremely intense light
- b. Perfectly monochromatic
- c. Coherent
- d. Divergent
- 43. The light from a laser source is monochromatic because all the photons.....
 - a. Are in phase
 - b. Have same energy
 - c. Have same amplitude
 - d. Are in the same direction.
- 44. In population inversion process the number of atoms in metastable state is comparison to the ground state is.....
 - a. Smaller
 - b. Greater
 - c. Equal
 - d. None of these.

45. He- Ne laser is.....

- a. Liquid state
- b. Solid state
- c. Gaseous state
- d. None of these.

46. At which ratio He-Ne gas is used in He-Ne laser?

- a. 1:1
- b. 10:1
- c. 9:9
- d. 5:5