Arts, Commerce & Science College, Bodwad.

Question Bank

Class: F.Y.B.Sc.	Sem: II
Subject: Physical & Inorganic Chemistry	Paper Name: Chemistry-I

- 1. The average kinetic energy of a gas molecule is_____
 - A. Inversely proportional to absolute temperature.

B. Directly proportional to absolute temperature.

- C. Equal to square of absolute temperature.
- D. Directly proportional to square root of absolute temperature.
- 2. For the mole of a gas, the kinetic energy of the gas molecule is_____

A. K.E. = ½ RT B. K.E. = 5/2 RT C. K.E. = 3/2 RT D. K.E. = 7/2 RT

- 3. The real gas shows nearly ideal behaviour at_____
 - A. Low pressure and low temperature.
 - B. High pressure and high temperature.
 - C. High pressure and low temperature.
 - D. Low pressure and high temperature.
- 4. The unit of van der Waal constant 'a' is _____

A. atm.lit.mol⁻¹

B. atm.lit⁻¹.mol⁻¹

C. atm.lit².mol⁻²

D. atm.lit⁻¹.mol⁻²

5. The compressibility factor z for an ideal gas is_____

A. zero B. < 1 C. > 1 D. = 1

6. When z > 1 the gas _____

A. more compress	ible B. less com	npressible C. expan	ndable D. not ex	andable
7. the unit of van der	Waal constant 'b' is	5		
A. lit.atm.deg ⁻¹ .mc	l^{-1} B. atm.	deg ⁻¹ C. lit.	nol -1 D. d	eg ⁻¹ .K
8. The incompressible	e volume per mole o	of a gas is related with_		
A. constant 'a'	B. constant 'b'	C. constant 'R'	D. critical constar	nt

9. The critical volume is related with van der Waal constant as,

A. Vc = 3/b B. Vc = 4/3 b C. Vc = 3b D. $Vc = b^2$

- 10. Rates of diffusion of two gases under identical conditions of temperature and pressure are
 - inversely proportional to _____
 - A. square of densities
 - B. square of molar mass
 - C. square root of molar masses or densities
 - D. none of these
- 11. Graham's law of diffusion is valid under identical conditions of _____
 - A. volume and pressure

B. temperature and pressure

- C. volume and temperature
- D. equal number of moles.

12. During elastic collision of the molecules,_____

A. the K.E. remain constant

- B. the K.E. increases
- C. the K.E. decreases
- D. there is increase in temperature.

13. The temperatur pressure is		al gas obeys	ideal gas e	quation over an a	appreciable range of
A. critical temper	rature		B. a	bsolute temperat	ure
C. Boyle's temp		D. re	educed temperatu	ire	
14. The compression	on of nitrogen ga	s at different	temperatur	re shows its Boy	le's temperature is,
A70 ⁰ C	B35 ⁰ C		C200°C		D. 50°C
15. Andrew's isoth	erm proved criti	cal temperatu	re for CO ₂	is,	
A. 48.1 ⁰ C	B. 31.1°C	C. 21.	1^{0} C	D. 13.1 ⁰ C	
16. Molar gas cons	tant is	to critical	temperatu	re.	
A. directly propo	rtional B .	inversely pro	oportional	C. equal	D. 8 times
17. The van der Wa	aal constant 'b' i	s always equa	al to		
A. one third to cr	itical volume		B. three ti	mes to critical vo	olume
B. zero			D. reciproc	cal to critical vol	ume
18. The ratio of mo	lar gas constant	to Avogadro ³	's number i	is known as,	
A. Boyle's point constant	B. critical c	constant C	. compress	ibility factor	D. Boltzman
19. K.E. of translat	ion per molecule	e is always eq	ual to,		
A. 1.5 nkT	B. RT	C. PV	D. 0.5 r	mV^2	
20. Liquification of	f gas depends on				
A. Temperature gas	of gas B. pr	essure of gas	C. sl	hape of container	D. nature of
21. The permanent	gases like hydro	ogen, oxygen,	nitrogen, l	have	critical temperature.
A. very low	B. very high	C. me	oderate	D. zero	

22. The gases such as ammonia	methyl chloride, carbon dioxide, havecritical
temperature	
A. very low	B. fairly high
C. absolute	D. zero
23. In Joule Thomson effect, th	ere is fall in temperature of gas occur due to
A. zero work done	B. work is done on the gas
C. work is done by the gas	D. maximum work
24. Linde's process is based on	
A. van der Waal equation	B. law of corresponding states
C. Joule Thomson principl	D. Andrew's method
	s compressed to a pressure
A. 50 atm B. 500 atr	C. 100 atm D. 300 atm
26. The gas used in refrigeratio	and air conditioning has
A. low critical temperature	B. high critical temperature
C. low temperature coefficie	t D. high pressure
27. Physical properties of liquid	are controlled by
A. strength of repulsive force	s B. strength of attractive forces
C. strength of covalent bond	D. strength of overlapping
28. The air drop liquid is spher	cal in shape because
A. for a given volume sphere	-
	e has minimum surface area
C. of internal frictional force	
D. of capillary action	
29. The cgs unit of surface tens	on is
A. Newton/meter	B. dyne per centimeter C. Poise

D. None

30. Surface tension of liquid _____ with rise in temperature B. Not changes C. Decreases D. Becomes zero A. Increases 31. When the capillary is placed in a liquid whose adhesive forces are stronger then the meniscus of liquid is____ A. Concave B. Convex C. Spherical D. Indefinite 32. When the capillary is placed in a liquid whose cohesive forces are stronger then the meniscus of liquid is_____ C. Spherical A. Concave **B.** Convex D. Indefinite 33. When glass capillary dips in water, the meniscus of water is____ C. Spherical D. Indefinite A. Concave **B.** Convex 34. Surface tension of liquid is determined by_____ C. Stalagmometer B. Refractometer D. Eudiometer A. Viscometer 35. When liquid is flowing through pipe, the velocity of the central layer is_____ A. minimum B. slow C. zero D. fast 36. The molecules having spherical shape has _____ A. Higher viscocity **B.** Lower viscocity. C. Zero viscocity D. Not related with viscocity. 37. The SI unit of surface tension is _____ C. Dyne per cm A. Newton per meter B. Joule per second D. Poise per cm 38. The determination of surface tension in capillary rise method is based on the formula, B. $2r = h^2 dg$ A. 2r = hrdgC. 2r = mhrdgD. $2r = \pi hr^2 dg$ 39. Viscosity of the liquid is a measure of _____

A. repulsive forces	between the liquid molec	cules B. Fricti	onal resistance
C. intermolecular forces between the molecules		iles D. Hydro	ogen bonding
40. The reciprocal coe	fficient of viscosity of th	e liquid is	
A. internal friction	B. surface tensior	C. fluidity of the	e liquid D. temp. coeff.
41. Generally viscosity	y of liquid	with temperature.	
A. Decreases	B. Increases	C. Doubles	D. Independent
42. The liquid with high	gh intermolecular forces	have viscosity	y
A. Higher	B. Lower C. M	Ioderate D). Zero
43. The viscosity of he	ot groundnut oil is	than cold groun	dnut oil.
A. Higher	B. Lower C. n	not related	D. same
44. Liquid of high mo	lecular weight always ha	ve visco	sity.
	Higher C. Do		
		r	-
45 The unit of coeffic	ient of viscosity is		
A. dyne.cm ⁻² .sec		C. Newton per meter	D dyna cm^{-1}
A. dyne.em .see	D. poise	C. Newton per meter	D. uyne.em
-	of heat or any other form cal change is called,	n of energy into or out o	of system undergoing
A. thermochemistry	B. thermo kinetic	C. thermodynamics	D. photochemistry
47 Thermodynamics i	is applicable to		
A. microscopic syst	••	B. macroscopic	system
C. homogeneous sy	stem only	D. heterogeneou	ıs system
40 4	1 1 1	1. 11 1	
48. A process which ta A. reversible	akes place on its own acc B. irreversible	cord is called C. spontaneous	-
		- r	r

49. Mixing of two	or more gases is a	process.	
A. reversible	B. irreversible	C. spontaneous	D. non-spontaneous
A. unidirection	neous processes are al and instantaneous by external source	B. reversible and s	
	sure of of the n B. velocity C		n. D. randomness or disorder
52. The unit of entr A. cal.K ⁻¹ .mole ⁻¹	B. JK ⁻¹ mol ⁻¹	C. entropy unit	D. all of these
	entropy is B. joule per degree kelvi	n C. erg.deg ⁻¹	D. lit.atm.deg ⁻¹
• •	neous process, entropy of th B. decreases	•	D. fluctuates
	reaction, entropy is B. negative	C. zero	D. constant
56. Entropy of the A. extensive	system is property B. intensive C. cher	nical D. thermo	chemical
57. Entropy change A. positive	e for isothermal reversible p B. negative C	rocess is always . zero D.	
58. Entropy change A. positive	e for isothermal irreversible B. negative C		constant
59. The entropy ch A. $\Delta S = nRln$ (V C. $\Delta S = nRT ln$ (·	e process is obtained b $\Delta S = nRln (V_2/V_1)$ $\Delta S = nRT ln (T_1/T_2)$	oy

60. The entropy cha	inge in isobaric proce	ss is given by	
A. $\Delta S = nC_v \ln (T_v)$	Γ_2/T_1)	B. $\Delta S = nC_p \ln (V_2/V_1)$	
$\mathbf{C.}\ \Delta\mathbf{S}=\mathbf{n}\mathbf{C}_{\mathbf{p}}\ln\left($	T 2/ T 1)	D. $\Delta S = nC_v \ln (V_2/V_1)$	
61. The entropy cha	nge in isochoric proc	ess is given by	
A. $\Delta S = nC_v \ln ($	T_2/T_1)	B. $\Delta S = nC_p \ln (V_2/V_1)$	
$C. \Delta S = nC_p \ln (T)$	Γ_2/T_1)	D. $\Delta S = nC_v \ln (V_2/V_1)$	
62. Physical transfo	rmation always occur	rs at	
A. constant volu	•	pressure C. constant temp	perature D None
The constant volu	ne D. constant _E		britature D. None
63. Entropy of the s	system increase in the	order of	
A. gas < liquid <	solid	B. solid < liquid < gas	
C. gas < solid < l	iquid	D. liquid < gas < solid	
	•	ses mainly depends on	
A. pressure of the	•	B. volume of the gases	
C. mole fraction	of the gases	D. nature of the gases	
65 Entropy change	during fusion is	to fusion temperature	e of the system
A. directly propo	•	B. inversely proportion	•
C. equal	luonui	D. twice multiple	
66. Entropy change	during transition and	heat of transition are	
A. Equal B. re	everse to each other	C. directly proportional	D. inversely proportional
	llowing statements is		
A. All ores are m		B. All minerals are or	
C. All mineral ca	nnot be an ore	D. An ore cannot a min	eral
68 The impurities i	n the mineral are call	ed	
A. Flux	B. alloy	C. gangue	D. slag
	2	88	D

69. In thermite proce A. C	ess, the reducing ag B. Zn	-	D. Al	
70. Electrolyte reduc A. alkali metals	-		xtraction of C. aluminium	
71. Leaching is a pro A. reduction		C.	concentration	D. roasting
72. The main function A. to remove vol	-		ation C. reductio	n D. to make slag
73. The process of co A. roasting	onverting hydrated B. smelting		nto anhydrous alumin . dressing	
	process is based on y of the ore partic by of the ore particl	les	• •	operty of the ore particles roperty of the ore particles
75. Auto reduction p A. Cu and Hg	rocess is used in th B. Zn and		n of C. Cu and Al	D. Fe and Pb
-	rocess, the ore is he noisture and volatil of flux to remove	e matter		melting point hese
77. Which of the foll A. pine oil	lowing is used as a B. sodium cyanic	-	gent in froth floatation C. copper sulphate	on process D. KCN
78. The function of f A. to make the ore	-	-	e ore is o remove gangue	

C. to facilitate redu	ction	D. to facilit	ate oxidation	
79. Metallurgy is the	process of			
A. concentrating th	e ore	B. roasting	the ore	
C. extracting the r	netal from the o	re D. adding o	carbon	
80. Froth floatation pr	ocess is used for	the concentration	of	
A. oxide ores	B. sulphid	le ores C. c	hloride ores	D. amalgams
81. The substance wh	ich is mixed with	the ore for remov	al of impurities is	s termed as
A. slag	B. gangue	C. flux	D. cataly	/st
82. Which of the flux	es is used to remo	ove acidic impuriti	es in metallurgica	al process?
A. silica	B. lime stone	C. sodium cl	hloride	D. sodium carbonate
83. Auto reduction pr	ocess is in the ext	traction of		
A. Cu	B. Al	C. Zn	D. Mn	
84. In alumino-thermi	te process, Al is	used as		
A. oxidizing agent	B. flux	C. re	ducing agent	D. solder
85. Difference in the	specific gravity/ c	lensity of the meta	llic ore and impu	rity particles is the basis
of				
A. gravity separat	ion	B. magnetic sep	paration	
C. molecular attrac	tion	D. froth floatati	on	
86. Thermite process	is used for the ex	traction of metals,	whose oxides are	2
A. fusible		B. not easily re	educed by carbo	n
C. not easily reduce	ed by hydrogen	D. strongly bas	ic	
87. Which one of the	following is not a	u basic flux		
A. CaCO ₃	B. CaO	C. SiO ₂	D. MgO	

88. Liquation p	rocess of refin	ing of metals is u	sed for the refini	ng of,	
A. low meltin	ng metal B	. high melting m	etal C. less fu	sible metal	D. infusible metal
90 The distillet	ion nuo ooso is	used for the num	fightion of volatil	a matala lilea	
	-	used for the puri			·,
A. Pb	B. Hg	C. (Cu D. I	Na	
90. The process	of extracting	the metal from it	s ore is called,		
A. Refining	B. I	Leaching C	C. Metallurgy	D. Conce	entration
91. The purifica	tion method f	or impure metal b	based upon the el	ectrolysis is	called
-		B. Liquation	-	-	
	ine i enning	D. Diquation	C. Distillation	D. 119	aro motanargy
92. What is the	general electro	onic configuration	n of group IV A o	element?	
A. ns ² np ⁴		B. ns ² np ²	C. ns ²	² np ⁶	D. ns^2
93. In ground st	ate, each carb	on atom has	unpaired ele	ectrons.	
A. 2	B. 3	C. 4	D. 5		
94. In graphite,	each carbon a	atom is	_ hybridized.		
A. sp ²	B. sp ³	C. dsp ²	D. sp		
95. Carbon atom	ns in diamond	are bonded with	each other in a _		configuration.
A. Linear	B. Pla	nar C.	Tetrahedral	D. Octa	ahedral
96. The number	of empty orb	itals in the valanc	e shell of phosph	norus is,	
A. 5	B. 3	C. 2	D. 0		
97. Diamond is	hard because,				
A. All four v	alance electro	ons are bonded (to each carbon		
B. It is a gian	t molecule.				
C. It is made	of 2 carbon at	oms.			
D. It cannot b	be burnt.				

98. Which form of the carbon has two-dimensional sheet like structure?

C. Coal	D. Coke
	C. Coal

99. Red phosphorus is less reactive than white phosphorus, because					
B. It is highly polyme	erized C. It is tetrate	mic D. It is hard			
wing element shows all	otropy?				
B. P	C. Sb	D. Bi			
	B. It is highly polyme owing element shows all	B. It is highly polymerized C. It is tetrato owing element shows allotropy?			