Q.N.	TYBSc(Mathematics) Subject : MTH 503: Algebra	Ans
	Question Bank	
1)	A subgroup H of a group G is called a normal subgroup of G if	(B)
	a) $Ha = Ha^{-1}$, $\forall a \in G$ b) $Ha = aH$, $\forall a \in G$ c) $Ha = a^{-1}H$, for some $a \in G$ d) $Ha = aH^{-1}$, $\forall a \in G$	
2)	Read the following statement and choose the correct option. Statement: The kernel of a group homomorphism is always a normal subgroup. This statement is (A) True (B) False (C) Not relevant (D) None of these	(A)
3)	A normal subgroup is also called (A) invariant subgroup (B) self-conjugate subgroup (C) both (A) and (B) (D) none of these	(C)
(4)	A group $G \neq \{e\}$ is called a if the only normal subgroups of G are $\{e\}$ and G . (A) simple group (B) finite group (C) infinite group (D) quotient group	(A)
(5)	 Let G be a group. The subgroup of G whose members are finite products of elements of the form aba⁻¹ b⁻¹, a ∈ G and b ∈ G is called the (A) Commutative subgroup (B) Commutator subgroup (C) Non Commutator Subgroup (D) None of these 	(B)
(6)	A group <i>G</i> is an abelian group if and only if the commutator subgroup of <i>G</i> is the (A) Trivial group (B) Non-trivial group (C) Both (A) and (B) (D) None of these	(A)
(7)	Read the following statement and choose the correct option. Statement: The commutator subgroup of a group is a normal subgroup. This statement is (A) True (B) False (C) Irrelevant (D) None of these	(A)
(8)	Read the following statement and choose the correct option. Statement: The commutator subgroup of a group is not a normal subgroup. This statement is (A) True (B) False (C) Irrelevant (D) None of these	(B)
(9)	Let G be a group and G' the commutator subgroup of G . Then G/G' is (A) Abelian group (B) Non abelian group	(A)

	(C) Not a quotient group (D) None of these	
(10)	Let H be a subgroup of a group G and $a \in G$. Then, the right	(D)
	coset of H in a group G is given by	
	$(A)aH = \{ha/h \in H\} (B)Ha = ah/h \in H$	
	$(C)Ha = \{he/h \in H, e \in G\} \qquad (D)Ha = \{ha/h \in H\}$	
(11)	Let $G = \mathbb{Z}$ (group) and its subgroup $H = 3$. Then the quotient	(A)
	group G/H is	
	$(A) \mathbb{Z}_3 (B) \mathbb{Z}$	
	(C) 3Z (D) Not exist	
(12)	Consider the group Z_{12} with addition modulo \bigoplus_{12} and let H	(C)
	$=\{0,3,6,9\}$. Then H is a subgroup of G and the elements of left	
	coset 8+ H are	
	(A) {0,3,6,9} (B) {0,1,2,3,4,5,6,7,8,9,10,11}	
(1.2)	(C) {2,5,8,11} (D) {8,11,14,17,0}	(5)
(13)	a*H = H*a relation holds if H is	(D)
	(A) a semigroup of an abelian group (B) a cyclic group	
(14)	(C) a monoid of a group (D) a subgroup of an abelian group If G is a finite group and N is a normal subgroup of G then	(A)
(14)		(A)
	$0(G/N) = \dots$	
	$(A)\frac{o(G)}{o(N)}$ $(B)\frac{o(N)}{o(G)}$	
	$(C)\frac{o(G)}{o(H)}$ (D)does not exist	
(4.5)	0(11)	
(15)	Read the following statements and choose the correct option.	(0)
	Statement I: If <i>G</i> is an abelian group then so would be any of its quotient group is an abelian group.	(C)
	its quotient group is an abelian group. Statement II: We can have an abelian quotient group, without	
	the 'parent' group being an abelian.	
	(A) Only statement I is true (B) Only statement II is true	
	(C) Both (A) and (B) are true (D) None of these	
(16)	Let G and G' be isomorphic. If G is an abelian group, so G' is	(B)
	(A) non-abelian group (B) an abelian group	
	(C) finite group (D) none of these	
(17)	Let $\theta: G \rightarrow G'$ be an isomorphism of G onto G' . Let e and e' be	(A)
	the unit elements of G and G' respectively. Then	
	(A) $\theta(e) = e'(B) \theta(e) = e$	
	(C) $\theta(e) = 0$ (D) $\theta(0) = e'$	
(18)	Let $\theta: G \to G'$ be an isomorphism of G onto G' . Let e and e' be	(D)
	the unit elements of G and G' respectively. Then for any $a \in G$	
	G, G	
	(A) $\theta(a^{-1}) = e$ (B) $\theta(a^{-1}) = e'$	
(10)	(C) $\theta(a^{-1}) = a$ (D) $\theta(a^{-1}) = [\theta(a)]^{-1}$	(3)
(19)	Let $\theta: G \to G'$ be a homomorphism of G onto G' and let K	(A)
	$= \ker \theta$. Then <i>K</i> is a normal subgroup of <i>G</i> and $G/K = \dots$	
	(A) G' (B) G	
	(C) K (D) None of these	

(00)	Annie Crite and in annual in income thin to	(3)
(20)	Any infinite cyclic group is isomorphic to	(A)
	$(A) Z (B) Z_n$	
	$(C)^{Z}/n (D)^{Z}/nZ$	
(21)	If $f:G \rightarrow G'$ be an onto homomorphism with $K = Kerf$, then	(B)
	$(A)^{\frac{G}{\nu}} \cong G (B)^{\frac{G}{\nu}} \cong G'$	
	K K	
	(C) $\frac{G}{K} \neq G'$ (D) none of these	
(22)	Let S be a non-empty set. Any, mapping $f: S \rightarrow S$ is	(A)
	called a permutation.	
	(A) one-one, onto (B) many-one, onto	
	(C) one-one, into (D) many-one, into	
(23)	Anof G onto itself is called anof G , where G is a	(C)
	group.	
	(A) automorphism, isomorphism (B) homomorphism,	
	automorphism	
	(C) isomorphism, automorphism (D) none of thes	
(24)	Any finite cyclic group of order <i>n</i> is isomorphic to	(B)
	$(A) Z (B) Z_n$	
	$(C)^{Z}/n(D)$ none of these	
(25)	Permutation is amapping.	(C)
	(A) injective (B) surjective	
	(C) bijective (D) only injective	
(26)	A cycle of length two is called	(B)
	(A) identity permutation (B) transposition	
	(C) orbit (D) odd permutation	
(27)	In the following permutation on 4-symbols, what is the value of	(A)
	$\sigma(3)$?	
	$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$	
	L I I O	
	(A) 4 (B) 1	
100:	(C) 2 (D) 3	
(28)	Statement: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 1 \end{pmatrix}$ is a permutation.	
	This statement is	
	(A) True (B) False	(B)
	(C) Can't say (D) None of these	
(29)	The elements of a symmetric group S_3 can be interpreted as	(C)
	symmetries of a	
	(A) square (B) tetrahedron	
	(C) Triangle (equilateral) (D) None of these	
(30)	The elements of a symmetric group S_4 can be interpreted as	(B)
	symmetries of a	
	(A) square (B) tetrahedron	
	(C) triangle (D) None of these	
(31)	The elements of a symmetric group D_4 can be interpreted as	(A)
	symmetries of a	

	(A) square (B) tetrahedron	
(22)	(C) triangle (D) None of these	(B)
(32)	$O(S_n) = \cdots$, where S_n symmetric group of degree n . (A) $(n-1)!$ (B) $n!$	(B)
	(C) $(n+1)!$ (D) $\frac{n!}{2}$	
(33)		(D)
(33)	Cycle representation of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 1 & 4 \end{pmatrix} \in S_n$ is	(5)
	(A) (1 2 5 4) (B) (2 5 4 1)	
	(C) (4 1 2 5) (D) All of these	
(34)	Two-line notation for a cycle $(1\ 3\ 5\ 4)$ in S_5 is	(B)
	$ (A)\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 1 & 4 \end{pmatrix} (B) \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix} $ $ (C))\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 3 & 1 & 4 \end{pmatrix} (D))\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 1 & 4 \end{pmatrix} $	
	$(C)_{\alpha} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix}$ $(D)_{\alpha} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix}$	
	$(5)^{10} - (5)^{2} + (5)$	
(35)	$O(S_3)$, where S_3 symmetric group of degree 3.	(C)
	(A) 2 (B) 4	
	(C) 6 (D) 3	
(36)	Order of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$ is	(A)
	(A) 3 (B) 4	
	(C) 5 (D) 6	
(37)	(C) 5 (D) 6 Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$ be two permutations on 4 symbols, then $\sigma \tau = \dots$	(D)
	permutations on 4 symbols, then $\sigma \tau =$	
	(A) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$ (B) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$ (C) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$ (D) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$	
	$\begin{pmatrix} 1 & 2 & 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 & 4 \end{pmatrix}$	
	(C) $\begin{pmatrix} 2 & 3 & 4 & 1 \end{pmatrix}$ (D) $\begin{pmatrix} 4 & 1 & 2 & 3 \end{pmatrix}$	
(38)	Express the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 4 & 2 & 1 & 6 & 5 & 8 & 9 & 7 \end{pmatrix}$	(D)
	as a product of disjoint cycles.	
	(A) (1324)(56) (B) (1324)(789)	
(20)	(C) (1324)(5)(6)(789) (D) (1324)(56)(789)	(D)
(39)	The single row representation of the permutation	(B)
	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 5 & 6 & 1 & 4 \end{pmatrix} \text{ is}$	
	(A) (1235)(46) (B) (123456)	
(46)	(C) (123651) (D) (125)(46)	(-)
(40)	The group S_n is a finite group and is non-abelian if	(B)
	(A) $n \ge 2$ (B) $n > 2$ (C) $n \le 2$ (D) $n < 2$	
	$ (O) n \ge 2 (D) n \le 2$	

 The permutation σ = (1234567) is (A) an even permutation (B) an odd permutation (C) neither even nor odd permutation (D) None of these A permutation is calledpermutation if it can be expressed as a product ofnumber of transpositions. (A) even, odd (B) odd, even (C) odd, odd (D) none of these The group S_n of all permutations defined on n-symbols is called (A) the symmetric group (B) the non-symmetric group (C) transposition (D) abelian group A permutation is calledpermutation if it can be expressed as a product ofnumber of transpositions. (A) even, even (B) even, odd (C) odd, even (D) none of these If S = {1, 2, 3, 4} then, in A₄ how many permutations are there? (A) 	l
(B) an odd permutation (C) neither even nor odd permutation (D) None of these 42) A permutation is calledpermutation if it can be expressed as a product ofnumber of transpositions. (A) even, odd (B) odd, even (C) odd, odd (D) none of these 43) The group S _n of all permutations defined on n-symbols is called (A) the symmetric group (B) the non-symmetric group (C) transposition (D) abelian group 44) A permutation is calledpermutation if it can be expressed as a product ofnumber of transpositions. (A) even, even (B) even, odd (C) odd, even (D) none of these	
(D) None of these A permutation is calledpermutation if it can be expressed as a product ofnumber of transpositions. (A) even, odd (B) odd, even (C) odd, odd (D) none of these The group Sn of all permutations defined on n-symbols is called (A) the symmetric group (B) the non-symmetric group (C) transposition (D) abelian group A permutation is calledpermutation if it can be expressed as a product ofnumber of transpositions. (A) even, even (B) even, odd (C) odd, even (D) none of these	
A permutation is calledpermutation if it can be expressed as a product ofnumber of transpositions. (A) even, odd (B) odd, even (C) odd, odd (D) none of these The group Sn of all permutations defined on n-symbols is called (A) the symmetric group (B) the non-symmetric group (C) transposition (D) abelian group 44) A permutation is calledpermutation if it can be expressed as a product ofnumber of transpositions. (A) even, even (B) even, odd (C) odd, even (D) none of these	
as a product ofnumber of transpositions. (A) even, odd (B) odd, even (C) odd, odd (D) none of these 43) The group S _n of all permutations defined on n-symbols is called (A) the symmetric group (B) the non-symmetric group (C) transposition (D) abelian group 44) A permutation is calledpermutation if it can be expressed as a product ofnumber of transpositions. (A) even, even (B) even, odd (C) odd, even (D) none of these	
(A) even, odd (B) odd, even (C) odd, odd (D) none of these 43) The group S _n of all permutations defined on n-symbols is called (A) the symmetric group (B) the non-symmetric group (C) transposition (D) abelian group 44) A permutation is calledpermutation if it can be expressed as a product ofnumber of transpositions. (A) even, even (B) even, odd (C) odd, even (D) none of these	
(C) odd, odd (D) none of these The group S_n of all permutations defined on n -symbols is called (A) the symmetric group (B) the non-symmetric group (C) transposition (D) abelian group A permutation is calledpermutation if it can be expressed as a product ofnumber of transpositions. (A) even, even (B) even, odd (C) odd, even (D) none of these	
The group S_n of all permutations defined on n -symbols is called (A) the symmetric group (B) the non-symmetric group (C) transposition (D) abelian group 44) A permutation is calledpermutation if it can be expressed as a product ofnumber of transpositions. (A) even, even (B) even, odd (C) odd, even (D) none of these	
 n-symbols is called (A) the symmetric group (B) the non-symmetric group (C) transposition (D) abelian group 44) A permutation is calledpermutation if it can be expressed as a product ofnumber of transpositions. (A) even, even (B) even, odd (C) odd, even (D) none of these 	
(A) the symmetric group (B) the non-symmetric group (C) transposition (D) abelian group 44) A permutation is calledpermutation if it can be expressed as a product ofnumber of transpositions. (A) even, even (B) even, odd (C) odd, even (D) none of these	
(B) the non-symmetric group (C) transposition (D) abelian group 44) A permutation is calledpermutation if it can be expressed as a product ofnumber of transpositions. (A) even, even (B) even, odd (C) odd, even (D) none of these	
(C) transposition (D) abelian group 44) A permutation is calledpermutation if it can be expressed as a product ofnumber of transpositions. (A) even, even (B) even, odd (C) odd, even (D) none of these	
(D) abelian group 44) A permutation is calledpermutation if it can be expressed as a product ofnumber of transpositions. (A) even, even (B) even, odd (C) odd, even (D) none of these	
A permutation is calledpermutation if it can be expressed as a product ofnumber of transpositions. (A) even, even (B) even, odd (C) odd, even (D) none of these	
as a product ofnumber of transpositions. (A) even, even (B) even, odd (C) odd, even (D) none of these	
(C) odd, even (D) none of these	
45) If $S = \{1, 2, 3, 4\}$ then, in A_4 how many permutations are there? (A)	
(A) 12 (B) 21	
(C) 24 (D) 4	
The alternating group is the group of allpermutations. (A)	
(A) even (B) odd	
(C) both (A) and (B) (D) none of these	
47) $O(A_4) =$, where A_4 is the subgroup of S_4 . (B) 12	
(A) 21 (B) 12 (C) 24 (D) 6	
49) Identity permutation is alwayspermutation. (A)	
(A) even	
(B) odd	
(C) neither even nor odd permutation	
(D) none of these	
The inverse of an odd permutation is permutation. (C)	
(A) even	
(B) neither even nor odd permutation	
(C) odd	
(D) none of these The value of $\sigma(4)$ if $\sigma = (1,4,3,2)$	
The value of $\sigma(4)$ if $\sigma = (1 \ 4 \ 3 \ 2)$ (D) (A) 1 (B) 2	
(C) 4 (D) 3	
52) The inverse of (1 2 3 4) is (A)	
(A) (4 3 2 1) (B) (2 3 4 1)	
(C) (1 2 3 4) (D) (1 4 3 2)	
53) If R is a ring then trivial subrings of R are (C)	
(A) {0} (B) R	
(C) $\{0\}$ and R (D) none of these	
54) Let I_1 and I_2 are any two ideal of a ring R , then which of the	
following is incorrect?	
(A) $I1 \cup I2$ is an ideal of R	

	(D) I a I is an ideal of D	
	(B) $I_1 \cap I_2$ is an ideal of R	
	(C) $I_1 + I_2$ is an ideal of R	
,	(D) I_1I_2 is an ideal of R	4-1
55)	If I is an ideal in a ring R , then	(B)
	(A) $\frac{1}{R}$ is a ring (B) $\frac{R}{I}$ is a ring	
	(C) RI is a ring (D) None of these	
56)	If R is a commutative ring with unit element, M is an ideal of R	(B)
	and $\frac{R}{M}$ is a field, then	
	(A) $\stackrel{M}{M}$ is minimal ideal of R	
	(B) M is maximal ideal of R	
	(C) M is not a maximal ideal of R	
	(D) None of these	
57)	If <i>R</i> is a commutative ring with unit element, then	(A)
,	(A) every maximal ideal is prime ideal	
	(B) every prime ideal is maximal ideal	
	(C) every ideal is prime ideal	
	(D) every ideal is maximal ideal	
58)	If <i>R</i> is a finite commutative ring, then	(B)
	(A) every maximal ideal is prime ideal	
	(B) every prime ideal is maximal ideal	
	(C) every ideal is prime ideal	
	(D) every ideal is maximal ideal	
59)	Let $H_4 = \{4n \mid n \in \mathbb{Z}\}$ is aideal in the ring of even	(A)
	integers.	
	(A) maximal	
	(B) prime	
	(C) neither prime nor maximal (D) none of these	
60)	Let $H_4 = \{4n \mid n \in \mathbb{Z}\}$ is aideal in the ring of integers.	(6)
80)	(A) maximal	(C)
	(B) prime	
	(C) neither prime nor maximal	
	(D) none of these	
61)	If $R = \mathbb{Z}_6$ then $I = {\overline{0}, \overline{3}}$ is a	(A)
,	(A) ideal in $R = \mathbb{Z}_6$ (B) not ideal in $R = \mathbb{Z}_6$	
	(C) ideal in $R = \mathbb{Z}$ (D) None of these	
62)	Choose the ideals in a ring $R = Z$.	(D)
02,	(A) $I = 2\mathbb{Z}$ (B) $I = 3\mathbb{Z}$	
	(C) $I = 5\mathbb{Z}$ (D) All of these	
63)	Which of the following is prime ideal of a ring	(C)
	$R=\mathbb{Z}$.	
	$(A) I = 4\mathbb{Z} $ (B) $I = 6\mathbb{Z}$	
	$(C) I = 5\mathbb{Z}$ (D) All of these	
64)	A non-empty subset S of a ring R is a subring of R if and only if	(C)
	TATION OMPLY SUBSCIBED A HING A SUBHING OF A HEARING OFFILE	(C)

	a h c C thon	
	$a, b \in S$, then $(A) \text{ only } ab \in S$ $(B) \text{ only } a b \in S$	
	(A) only $ab \in S$ (B) only $a - b \in S$	
CE)	(C) $ab \in S$ and $a - b \in S$ (D) none of these	(5)
65)	Consider a quotient ring	(B)
	$\frac{\mathbb{Z}}{H_4} = \{H_4, H_4 + 1, H_4 + 2, H_4 + 3\},\$	
	Where, $\{H_4 = 4n / n \in \mathbb{Z}\}$ and $(\mathbb{Z}, +, *)$ is the ring of integers. The	
	additive identity in the quotient ring $\frac{\mathbb{Z}}{H_A}$ is	
	(A) $H_4 + 1$ (B) H_4	
	(C) $H_4 + 2$ (D) $H_4 + 3$	
66)	The ring $(\mathbb{Z}, +, *)$ has unity1, but its subring $(E, +, *)$ of even	(D)
-	integers has	
	(A) unity1 (B) unity 2	
	(A) unity 1 (B) unity 2 (C) unity 0 (D) no unity	
67)	If $R = Ring \ of \ integers$, then characteristic of R is	(A)
	(A) 0 (B) 1	
	(C) 2 (D) 3	
68)	The characteristic of the ring of integers (R) and ring of even	(D)
	integers (E) is such that	
	(A) $chR < chE$ (B) $chR \neq chE$	
	(C) $chR > chE$ (D) $chR = chE$	
69)	What is the characteristic of the ring of even integers?	(D)
	(A) 6 (B) 4	
	(C) 2 (D) 0	
70)	The characteristic of the ring \mathbb{Z}_6 is	(A)
	(A) 6 (B) 5	
74\	(C) 2 (D) 3 If integral domain <i>D</i> is of finite characteristic, then its	(6)
71)	characteristic is	(C)
	(A) odd number (B) even number	
	(C) prime number (D) natural number	
72)	A non-empty subset <i>I</i> of a ring <i>R</i> is called a right ideal of <i>R</i> if	(B)
- - ,	(A) $a, b \in I \Rightarrow a - b \in I$ (B) $a \in I, r \in R \Rightarrow ar \in I$	(-)
	(C) $a \in I$, $r \in R \Rightarrow ra \in I$ (D) both (A) and (B)	
73)	Read the following statements and choose the correct option.	(C)
	Statement I: An ideal is always a subring.	,
	Statement II: A subring may not be an ideal.	
	(A) Only statement I is true	
	(B) Only statement II is true	
	(C) Both (A) and (B) are true	
	(D) None of these	
74)	If $\theta: R \rightarrow R'$ be a homomorphism (where R and R' be the two rings	(A)
	with 0, 0' as zeros respectively) then	
	(A) $\theta(0) = 0', \ \theta(-a) = -a$ (B) $\theta(0) = 0, \ \theta(-a) = -a$	
	(C) $\theta(0) = 0', \ \theta(-a) = a$ (D) $\theta(0') = 0, \ \theta(-a) = -a$	

 (B) Let (R, +, *), (R, *, o) be two rings. A mapping θ : R→R' is called a homomorphism if for any a, b ∈ R. (A) 0(a +b) = 0(a) + 0(b) (B) 0(a +b) = 0(a) * 0(b) (C) θ(a +b) = θ(a) + θ(b) (D) θ(a*b) = θ(a) o θ(b) (C) θ(a +b) = θ(a) + θ(b) (D) θ(a*b) = θ(a) o θ(b) (C) θ(a +b) = θ(a) + θ(b) (D) θ(a*b) = θ(a) o θ(b) (D) θ(b) (
(A) $\theta(a+b) = \theta(a) + \theta(b)$ (B) $\theta(a+b) = \theta(a) * \theta(b)$ (C) $\theta(a+b) = \theta(a) * \theta(b)$ (D) $\theta(a+b) = \theta(a) * \theta(b)$ (C) $\theta(a+b) = \theta(a) * \theta(b)$ (E) $\theta(a+b) = \theta(a) * \theta(b)$ (B) $\theta(a+b) = \theta(a) * \theta(b)$ (C) $\theta(a+b) = \theta(a) * \theta(b)$ (B) $\theta(a+b) = \theta(a) * \theta(b)$ (C) $\theta(a+b) = \theta(a) * \theta(b)$ (B) $\theta(a+b) = \theta(a) * \theta(b)$ (C) $\theta(a+b) = \theta(a) * \theta(b)$ (B) $\theta(a+b) = \theta(a) * \theta(b)$ (C) $\theta(a+b) = \theta(a) * \theta(b)$ (B) $\theta(a+b) = \theta(a) * \theta(b)$ (C) $\theta(a+b) = \theta(a) * \theta(a)$ (A) $\theta(a) $	75)		(B)
$\theta(a*b) = \theta(a)*\theta(b) \qquad \theta(a*b) = \theta(a) o \theta(b) \\ (C) \theta(a+b) = \theta(a) + \theta(b) \qquad (D) \theta(a*b) = \theta(a) o \theta(b) \\ (C) \theta(a+b) = \theta(a) + \theta(b) \qquad (D) \theta(a*b) = \theta(a) o \theta(b) \\ (D) \theta(a*b) = \theta(a) o \theta(b) \\ (C) \theta(a+b) = \theta(a) + \theta(b) \qquad (D) \theta(a*b) = \theta(a) o \theta(b) \\ (C) \theta(a+b) = \theta(a) + \theta(b) \qquad (D) \theta(a*b) = \theta(a) o \theta(b) \\ (C) \theta(a+b) = \theta(a) + \theta(b) \qquad (D) \theta(a*b) = \theta(a) o \theta(b) \\ (C) \theta(a+b) = \theta(a) + \theta(b) \qquad (D) \theta(a*b) = \theta(a) o \theta(b) \\ (C) \theta(a+b) = \theta(a) + \theta(a) \qquad (D) \theta(a*b) = \theta(a) o \theta(b) \\ (C) \theta(a+b) = \theta(a) + \theta(a) \qquad (D) \theta(a*b) = \theta(a) \theta(a) \\ (C) \theta(a+b) = \theta(a) + \theta(a) \qquad (D) \theta(a*b) = \theta(a) \theta(a) \\ (C) \theta(a+b) = \theta(a) + \theta(a) \qquad (D) \theta(a*b) = \theta(a) \theta(a) \\ (C) \theta(a+b) = \theta(a) + \theta(a) \qquad (D) \theta(a) \\ (C) \theta(a+b) = \theta(a) + \theta(a) \qquad (D) \theta(a) \\ (E) \theta(a+b) = \theta(a) \theta(a) \qquad (D) \theta(a) \\ (E) \theta(a+b) = \theta(a) \theta(a) \theta(a) \theta(a) \theta(a) \theta(a) \\ (E) \theta(a+b) = \theta(a) \theta(a) \theta(a) \theta(a) \theta(a) \theta(a) \\ (E) \theta(a+b) = \theta(a) \theta(a) \theta(a) \theta(a) \theta(a) \\ (E) \theta(a+b) = \theta(a) \theta(a) \theta(a) \theta(a) \theta(a) \theta(a) \\ (E) \theta(a+b) = \theta(a) \theta(a) \theta(a) \theta(a) \theta(a) \theta(a) \theta(a) \\ (E) \theta(a+b) = \theta(a) \theta$			
 (C) θ(a + b) = θ(a) + θ(b) (D) θ(a + b) = θ(a) σ θ(b) Let f: R→R' be a homomorphism of R onto R' with kerf = 0.Then f is (A) an endomorphism (B) an isomorphism (C) an automorphism (D) none of these Then f: R→R' be a homomorphism of R in R'. Then f is a one-one map if and only if (A) kerf > 0 (B) kerf < 0 (C) kerf = 0 (D) none of these Read the following statement and choose the correct option. Statement: Let R = Z (ring) and P = pZ (ideal), where, p is a prime. Then P is a prime ideal in the ring R. (A) False (B) True (C) Can't say (D) None of these Read the following statement and choose the correct option. Statement: For any ideals I and J of a ring R, the sum I + J and the product IJ are ideals in a ring R. (A) True (B) False (C) Can't say (D) None of these Two polynomials f(x) = a₀ + a₁x + a₂x² + ··· + aₙx² n, a₂ ≠ 0 and g(x) = b₀ + b₂x + b₂x² + ··· + bₙx² n, b₂ ≠ 0 will be equal if and only if (A) m=n (B) a₂ = b₂ ∀i (C) both (A) and (B) (D) none of these If the ring R is an integral domain, then (A) R [x] is an integral domain (C) R [x] is a field (D) R [x] is a commutative division ring Read the following statements and choose the correct option. Let R [x] be the ring of polynomials over a ring R then Statement II: R has unity if and if R [x] has unity. (A) Only statement II is true (C) Both (A) and (B) are true (D) None of these Over the field of real numbers the polynomial x²+ 25 is (A) (A) irreducible 			
 (A) an endomorphism (B) an isomorphism (C) an automorphism (D) none of these (A) an endomorphism (D) none of these (B) tet f: R→R' be a homomorphism of R in R'. Then f is a one-one map if and only if (A) kerf > 0 (D) none of these (C) kerf = 0 (D) none of these (D) none of these (E) kerf < 0 (D) None of these (E) False (C) Can't say (D) None of these (E) False (C) Can't say (D) None of these (E) False (C) Can't say (D) None of these (E) False (C) Can't say (D) None of these (E) False (C) Can't say (D) None of these (E) False (C) Can't say (D) None of these (E) False (C) Can't say (D) None of these (E) False (C) Can't say (D) None of these (E) False (C) Can't say (D) None of these (E) False (C) Can't say (D) None of these (E) False (C) Can't say (D) None of these (E) False (C) Can't say (D) None of these (E) False (C) Can't say (D) None of these (E) False (C) Can't say (D) None of these (E) False (C) Can't say (D) None of these (E) False (C) Can't say (D) None of these (E) False (C) Can't say (D) None of these (D) None of t		$\theta(a*b) = \theta(a) * \theta(b)$ $\theta(a*b) = \theta(a) o \theta(b)$	
is (A) an endomorphism (B) an isomorphism (C) an automorphism (D) none of these 77) Let f: R→R' be a homomorphism of R in R'. Then f is a one-one map if and only if (A) kerf > 0 (D) none of these 78) Read the following statement and choose the correct option. Statement: Let R = Z (ring) and P = pZ (ideal), where, p is a prime. Then P is a prime ideal in the ring R. (A) False (B) True (C) Can't say (D) None of these 79) Read the following statement and choose the correct option. Statement: For any ideals I and J of a ring R, the sum I + J and the product IJ are ideals in a ring R. (A) True (B) False (C) Can't say (D) None of these 80) Two polynomials f(x) = a₀ + a₁x + a₂x² + ··· + aₙx², aₙ ≠ 0 and g(x) = b₀ + b₁x + b₂x² + ··· + bₙx²n, bₙ ≠ 0 will be equal if and only if (A) m=n (B) aᵢ = bᵢ ∀i (C) both (A) and (B) (D) none of these 81) If the ring R is an integral domain, then (A) R [x] is an integral domain (B) R [x] is not an integral domain (C) R [x] is a field (D) R [x] is a commutative division ring 82) Read the following statements and choose the correct option. Let R [x] be the ring of polynomials over a ring R then Statement I: R is commutative if and only if R [x] is commutative if and only if R [x] is commutative if and only if R [x] is commutative. Statement II: R has unity if and if R [x] has unity. (A) Only statement I is true (C) Both (A) and (B) are true (D) None of these 83) Over the field of real numbers the polynomial x²+25 is (A) (A) irreducible			
 (A) an endomorphism (C) an automorphism (D) none of these (D) none of these (E) ter f. → F' be a homomorphism of R in R'. Then f is a one-one map if and only if (A) kerf > 0 (B) kerf < 0 (C) kerf = 0 (D) none of these (E) kerf = 0 (D) none of these (E) Read the following statement and choose the correct option. Statement: Let R = Z (ring) and P = pZ (ideal), where, p is a prime. Then P is a prime ideal in the ring R. (A) False (B) True (C) Can't say (D) None of these (C) Can't say (D) None of these (A) True (B) False (C) Can't say (D) None of these (B) False (C) Can't say (D) None of these (C) Can't say (D) None of these (E) True (B) False (C) Can't say (D) None of these (C) Can't say (D) None of these (D) None of these (E) Two polynomials f(x) = a₀ + a₁x + a₂x² + ··· + aₙx² , aռ ≠ 0 and g(x) = b₀ + b₁x + b₂x² + ··· + bռx² , bռ ≠ 0 will be equal if and only if (A) m= (B) aᵢ = bᵢ ∀i (C) both (A) and (B) (D) none of these (E) If the ring R is an integral domain (B) R [x] is not an integral domain (C) R [x] is a field (D) R [x] is a commutative division ring (E) Read the following statements and choose the correct option. Let R [x] be the ring of polynomials over a ring R then Statement I: R is commutative if and only if R [x] is commutative. (E) Statement I: R has unity if and if R [x] has unity. (A) Only statement I is true (B) Only statement I is true (C) Both (A) and (B) are true (D) None of these (D) None of these (D) None of these (D) None of these (A) (A) irreducible 	76)	·	(B)
(C) an automorphism (D) none of these 177) Let $f: R \rightarrow R'$ be a homomorphism of R in R' . Then f is a one-one map if and only if (A) $\ker f > 0$ (B) $\ker f < 0$ (C) $\ker f = 0$ (D) none of these 178) Read the following statement and choose the correct option. 178 Statement: Let $R = Z$ (fing) and $P = pZ$ (ideal), where, p is a prime. Then P is a prime ideal in the ring R . (A) False (B) True (C) Can't say (D) None of these 179 Read the following statement and choose the correct option. 180 Statement: For any ideals I and I of a ring I , the sum $I + I$ and the product II are ideals in a ring I . (A) True (B) False (C) Can't say (D) None of these 180 Two polynomials 181 $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$, $a_n \neq 0$ and $g(x) = b_0 + b_1x + b_2x^2 + \cdots + b_nx^n$, $b_n \neq 0$ will be equal if and only if (A) $m = n$ (B) $a_i = b_i \forall i$ (C) both (A) and (B) (D) none of these 181 If the ring I is an integral domain (B) I is an integral domain (B) I is an integral domain (C) I is a field (D) I is a field (D) I is a commutative division ring 182 Read the following statements and choose the correct option. 183 Let I be the ring of polynomials over a ring I then Statement I : I is commutative if and only if 184 I is commutative if and only if 185 I is commutative if and only if 186 I is commutative if and only if 186 I is commutative if and only if 187 I is commutative if and only if 189 I is commutative if and only if 180 I is an integral domain (C)			
 Let f: R→R' be a homomorphism of R in R'. Then f is a one-one map if and only if (A) kerf > 0 (C) kerf = 0 (D) none of these Read the following statement and choose the correct option. Statement: Let R = Z (ring) and P = pZ (ideal), where, p is a prime. Then P is a prime ideal in the ring R. (A) False (B) True (C) Can't say (D) None of these Read the following statement and choose the correct option. Statement: For any ideals I and J of a ring R, the sum I + J and the product IJ are ideals in a ring R. (A) True (B) False (C) Can't say (D) None of these Two polynomials f(x) = a₀ + a₁x + a₂x² + ··· + aₙxⁿ, aₙ ≠ 0 and g(x) = b₀ + b₁x + b₂x² + ··· + bₙxⁿ, bռ ≠ 0 will be equal if and only if (A) m= n (B) aᵢ = bᵢ ∀i (C) both (A) and (B) (D) none of these If the ring R is an integral domain, then (A) R [x] is an integral domain (B) R [x] is a commutative division ring Read the following statements and choose the correct option. Let R [x] be the ring of polynomials over a ring R then Statement I: R is commutative if and only if R [x] is commutative if and only if R [x] is commutative if and only if R [x] is commutative. Statement II: R has unity if and if R [x] has unity. (A) Only statement I is true (B) Only statement I is true (C) Both (A) and (B) are true (D) None of these Over the field of real numbers the polynomial x² + 25 is (A) (A) irreducible 			
map if and only if (A) $\ker P > 0$ (B) $\ker f < 0$ (C) $\ker f = 0$ (D) none of these 78) Read the following statement and choose the correct option. Statement: Let $R = Z$ (ring) and $P = pZ$ (ideal), where, p is a prime. Then P is a prime ideal in the ring R . (A) False (B) True (C) Can't say (D) None of these 79) Read the following statement and choose the correct option. Statement: For any ideals I and J of a ring R , the sum $I + J$ and the product IJ are ideals in a ring R . (A) True (B) False (C) Can't say (D) None of these 80) Two polynomials $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$, $a_n \neq 0$ and $g(x) = b_0 + b_1x + b_2x^2 + \dots + b_nx^n$, $b_n \neq 0$ will be equal if and only if (A) $m = n$ (B) $a_i = b_i \forall i$ (C) both (A) and (B) (D) none of these 81) If the ring R is an integral domain, then (A) R [R] is an integral domain (B) R [R] is not an integral domain (C) R [R] is a commutative division ring 82) Read the following statements and choose the correct option. Let R [R] be the ring of polynomials over a ring R then Statement I: R is commutative: if and only if R [R] be the ring of polynomials over a ring R then Statement II: R has unity if and if R [R] has unity. (A) Only statement I is true (B) Only statement I is true (C) Both (A) and (B) are true (D) None of these 83) Over the field of real numbers the polynomial $x^2 + 25$ is (A)	77\		(6)
(A) kerf > 0 (B) kerf < 0 (C) kerf = 0 (D) none of these Read the following statement and choose the correct option. Statement: Let $R = Z$ (ring) and $P = pZ$ (ideal), where, p is a prime. Then P is a prime ideal in the ring R . (A) False (B) True (C) Can't say (D) None of these 79) Read the following statement and choose the correct option. Statement: For any ideals I and J of a ring R , the sum $I + J$ and the product IJ are ideals in a ring R . (A) True (B) False (C) Can't say (D) None of these 80) Two polynomials $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n, \ a_n \neq 0 \text{ and } g(x) = b_0 + b_1x + b_2x^2 + \dots + b_nx^n, \ b_n \neq 0 \text{ will be equal if and only if}}$ (A) $m = n$ (B) $a_i = b_i \ \forall i$ (C) both (A) and (B) (D) none of these 81) If the ring R is an integral domain, then (A) $R[x]$ is not an integral domain (B) $R[x]$ is not an integral domain (C) $R[x]$ is a field (D) $R[x]$ is a commutative division ring 82) Read the following statements and choose the correct option. Let $R[x]$ be the ring of polynomials over a ring R then Statement II: R is commutative: Statement II: R has unity if and if $R[x]$ has unity. (A) Only statement I is true (B) Only statement II is true (C) Both (A) and (B) are true (D) None of these 83) Over the field of real numbers the polynomial $x^2 + 25$ is (A)	//)	·	(C)
 (C) kerf = 0 (D) none of these Read the following statement and choose the correct option. Statement: Let R = Z (ring) and P = pZ (ideal), where, p is a prime. Then P is a prime ideal in the ring R. (A) False (B) True (C) Can't say (D) None of these Read the following statement and choose the correct option. Statement: For any ideals I and J of a ring R, the sum I + J and the product IJ are ideals in a ring R. (A) True (B) False (C) Can't say (D) None of these Two polynomials f(x) = a₀ + a₁x + a₂x² + ··· + a_nx², a_n ≠ 0 and g(x) = b₀ + b₁x + b₂x² + ··· + b_nx², b_n ≠ 0 will be equal if and only if (A) m=n (B) a_i = b_i ∀i (C) both (A) and (B) (D) none of these If the ring R is an integral domain, then (A) R [x] is an integral domain (C) R [x] is a field (D) R [x] is a commutative division ring Read the following statements and choose the correct option. Let R [x] be the ring of polynomials over a ring R then Statement I: R is commutative if and only if R [x] is commutative if and only if R [x] is commutative. Statement II: R has unity if and if R [x] has unity. (A) Only statement I is true (B) Only statement I is true (C) Both (A) and (B) are true (D) None of these Over the field of real numbers the polynomial x²+25 is (A) (A) irreducible 		· ·	
 Read the following statement and choose the correct option. Statement: Let R = Z (ring) and P = pZ (ideal), where, p is a prime. Then P is a prime ideal in the ring R. (A) False (B) True (C) Can't say (D) None of these Read the following statement and choose the correct option. Statement: For any ideals I and J of a ring R, the sum I + J and the product IJ are ideals in a ring R. (A) True (B) False (C) Can't say (D) None of these Two polynomials f(x) = a₀ + a₁x + a₂x² + ··· + a₁x², a₁ ≠ 0 and g(x) = b₀ + b₁x + b₂x² + ··· + b₁x², b₁ ≠ 0 will be equal if and only if (A) m= (B) aᵢ = bᵢ ∀i (C) both (A) and (B) (D) none of these If the ring R is an integral domain, then (A) R [x] is an integral domain (B) R [x] is not an integral domain (C) R [x] is a field (D) R [x] is a commutative division ring Read the following statements and choose the correct option. Let R [x] be the ring of polynomials over a ring R then Statement I: R is commutative. Statement I!: R has unity if and if R [x] has unity. (A) Only statement I is true (B) Only statement II is true (C) Both (A) and (B) are true (D) None of these Over the field of real numbers the polynomial x²+ 25 is (A) 			
Statement: Let $R = Z$ (ring) and $P = pZ$ (ideal), where, p is a prime. Then P is a prime ideal in the ring R . (A) False (B) True (C) Can't say (D) None of these 79) Read the following statement and choose the correct option. Statement: For any ideals I and J of a ring R , the sum $I + J$ and the product IJ are ideals in a ring R . (A) True (B) False (C) Can't say (D) None of these 80) Two polynomials $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n, \ a_n \neq 0 \ \text{and} \ g(x) = b_0 + b_1x + b_2x^2 + \cdots + b_nx^n, \ b_n \neq 0 \ \text{will} \ \text{be} \ \text{equal} \ \text{if and only if}}$ (A) $m = n$ (B) $a_i = b_i \ \forall i$ (C) both (A) and (B) (D) none of these 81) If the ring R is an integral domain, then (A) R [x] is an integral domain (B) R [x] is not an integral domain (C) R [x] is a field (D) R [x] is a commutative division ring 82) Read the following statements and choose the correct option. Let R [x] be the ring of polynomials over a ring R then Statement I: R is commutative if and only if R [x] is commutative. Statement II: R has unity if and if R [x] has unity. (A) Only statement I is true (B) Only statement I is true (C) Both (A) and (B) are true (D) None of these 83) Over the field of real numbers the polynomial $x^2 + 25$ is (A)	78)		(B)
prime. Then P is a prime ideal in the ring R . (A) False (C) Can't say (D) None of these 79) Read the following statement and choose the correct option. Statement: For any ideals I and J of a ring R , the sum $I+J$ and the product IJ are ideals in a ring R . (A) True (B) False (C) Can't say (D) None of these 80) Two polynomials $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n, \ a_n \neq 0 \ \text{and} \ g(x) = b_0 + b_1x + b_2x^2 + \cdots + b_nx^n, \ b_n \neq 0 \ \text{will be equal if and only if}}$ (A) $m=n$ (B) $a_i = b_i \ \forall i$ (C) both (A) and (B) (D) none of these 81) If the ring R is an integral domain, then (A) $R[x]$ is an integral domain (B) $R[x]$ is not an integral domain (C) $R[x]$ is a field (D) $R[x]$ is a commutative division ring 82) Read the following statements and choose the correct option. Let $R[x]$ be the ring of polynomials over a ring R then Statement I: R is commutative: Statement II: R has unity if and if $R[x]$ has unity. (A) Only statement I is true (B) Only statement I is true (C) Both (A) and (B) are true (D) None of these 83) Over the field of real numbers the polynomial $x^2 + 25$ is (A)	70)	·	(6)
(A) False (C) Can't say (D) None of these 79) Read the following statement and choose the correct option. Statement: For any ideals <i>I</i> and <i>J</i> of a ring <i>R</i> , the sum <i>I</i> + <i>J</i> and the product <i>IJ</i> are ideals in a ring <i>R</i> . (A) True (B) False (C) Can't say (D) None of these 80) Two polynomials f(x) = a₀ + a₁x + a₂x² + ··· + aₙxⁿ, aₙ ≠ 0 and g(x) = b₀ + b₁x + b₂x² + ··· + bₙxⁿ, bₙ ≠ 0 will be equal if and only if (A) m= n (B) aᵢ = bᵢ ∀i (C) both (A) and (B) (D) none of these 81) If the ring <i>R</i> is an integral domain, then (A) <i>R</i> [x] is not an integral domain (C) <i>R</i> [x] is a field (D) <i>R</i> [x] is a commutative division ring 82) Read the following statements and choose the correct option. Let <i>R</i> [x] be the ring of polynomials over a ring <i>R</i> then Statement I: <i>R</i> is commutative. Statement II: <i>R</i> has unity if and if <i>R</i> [x] has unity. (A) Only statement I is true (B) Only statement I is true (C) Both (A) and (B) are true (D) None of these 83) Over the field of real numbers the polynomial x²+ 25 is (A) (A)		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Read the following statement and choose the correct option. Statement: For any ideals <i>I</i> and <i>J</i> of a ring <i>R</i> , the sum <i>I</i> + <i>J</i> and the product <i>IJ</i> are ideals in a ring <i>R</i> . (A) True (B) False (C) Can't say (D) None of these 80) Two polynomials $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n, \ a_n \neq 0 \text{ and } g(x) = b_0 + b_1x + b_2x^2 + \cdots + b_nx^n, \ b_n \neq 0 \text{ will be equal if and only if } (A) m = n (B) a_i = b_i \forall i$ (C) both (A) and (B) (D) none of these 81) If the ring <i>R</i> is an integral domain, then (A) <i>R</i> [<i>x</i>] is an integral domain (C) <i>R</i> [<i>x</i>] is a field (D) <i>R</i> [<i>x</i>] is a commutative division ring 82) Read the following statements and choose the correct option. Let <i>R</i> [<i>x</i>] be the ring of polynomials over a ring <i>R</i> then Statement II: <i>R</i> has unity if and if <i>R</i> [<i>x</i>] has unity. (A) Only statement I is true (B) Only statement II is true (C) Both (A) and (B) are true (D) None of these 83) Over the field of real numbers the polynomial <i>x</i> ² + 25 is (A)			
 Read the following statement and choose the correct option. Statement: For any ideals <i>I</i> and <i>J</i> of a ring <i>R</i>, the sum <i>I</i> + <i>J</i> and the product <i>IJ</i> are ideals in a ring <i>R</i>. (A) True (B) False (C) Can't say (D) None of these Two polynomials			
Statement: For any ideals I and J of a ring R , the sum $I+J$ and the product IJ are ideals in a ring R . (A) True (B) False (C) Can't say (D) None of these 80) Two polynomials $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n, \ a_n \neq 0 \ \text{and} \ g(x) = b_0 + b_1x + b_2x^2 + \cdots + b_nx^n, \ b_n \neq 0 \ \text{will be equal if and only if}}$ (A) $m=n$ (B) $a_i = b_i \ \forall i$ (C) both (A) and (B) (D) none of these 81) If the ring R is an integral domain, then (A) $R[x]$ is an integral domain (B) $R[x]$ is not an integral domain (C) $R[x]$ is a field (D) $R[x]$ is a commutative division ring 82) Read the following statements and choose the correct option. Let $R[x]$ be the ring of polynomials over a ring R then Statement I: R is commutative if and only if $R[x]$ is commutative. Statement II: R has unity if and if $R[x]$ has unity. (A) Only statement I is true (B) Only statement II is true (C) Both (A) and (B) are true (D) None of these 83) Over the field of real numbers the polynomial $x^2 + 25$ is (A)	79)		(A)
(A) True (B) False (C) Can't say (D) None of these 7 Two polynomials $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n, \ a_n \neq 0 \ \text{and} \ g(x) = b_0 + b_1x + b_2x^2 + \cdots + b_nx^n, \ b_n \neq 0 \ \text{will} \ \text{be equal if and only if}}$ (A) $m = n$ (B) $a_i = b_i \ \forall i$ (C) both (A) and (B) (D) none of these 1 If the ring R is an integral domain, then (A) $R[x]$ is an integral domain (B) $R[x]$ is not an integral domain (C) $R[x]$ is a field (D) $R[x]$ is a commutative division ring 2 Read the following statements and choose the correct option. Let $R[x]$ be the ring of polynomials over a ring R then Statement I: R is commutative. Statement II: R has unity if and if $R[x]$ has unity. (A) Only statement I is true (B) Only statement II is true (C) Both (A) and (B) are true (D) None of these 3 Over the field of real numbers the polynomial $x^2 + 25$ is (A)		Statement: For any ideals I and J of a ring R , the sum $I + J$ and	
 (C) Can't say (D) None of these (C) Two polynomials		the product <i>IJ</i> are ideals in a ring <i>R</i> .	
 Two polynomials f(x) = a₀ + a₁x + a₂x² + ··· + a_nxⁿ, a_n ≠ 0 and g(x) = b₀ + b₁x + b₂x² + ··· + b_nxⁿ, b_n ≠ 0 will be equal if and only if (A) m= n (B) a_i = b_i ∀i (C) both (A) and (B) (D) none of these If the ring R is an integral domain, then (A) R [x] is an integral domain (B) R [x] is not an integral domain (C) R [x] is a field (D) R [x] is a commutative division ring Read the following statements and choose the correct option. Let R [x] be the ring of polynomials over a ring R then Statement I: R is commutative if and only if R [x] is commutative. Statement II: R has unity if and if R [x] has unity. (A) Only statement I is true (B) Only statement II is true (C) Both (A) and (B) are true (D) None of these Over the field of real numbers the polynomial x²+ 25 is (A) (A) irreducible 		(A) True (B) False	
$f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n, \ a_n \neq 0 \ \text{and} \ g(x) = b_0 + b_1x + b_2x^2 + \dots + b_nx^n, \ b_n \neq 0 \ \text{will} \ \text{be} \ \text{equal} \ \text{if} \ \text{and} \ \text{only} \ \text{if} \ (A) \ m=n \ (B) \ a_i = b_i \ \forall i \ (C) \ \text{both} \ (A) \ \text{and} \ (B) \ (D) \ \text{none} \ \text{of} \ \text{these}$ $\textbf{81)} \qquad \text{If the ring} \ R \ \text{is} \ \text{an integral domain}, \ \text{then} \ (A) \ R \ [x] \ \text{is} \ \text{an integral domain} \ (C) \ R \ [x] \ \text{is} \ \text{an integral domain} \ (C) \ R \ [x] \ \text{is} \ \text{an integral domain} \ (C) \ R \ [x] \ \text{is} \ \text{a commutative division ring}$ $\textbf{82)} \qquad \text{Read the following statements and choose the correct option.} \ \text{Let} \ R \ [x] \ \text{be the ring of polynomials over a ring} \ R \ \text{then} \ \text{Statement} \ \textbf{I:} \ R \ \text{is commutative} \ \text{if and only if} \ R \ [x] \ \text{is commutative}.$ $\textbf{Statement} \ \textbf{II:} \ R \ \text{has unity} \ \text{if and if} \ R \ [x] \ \text{has unity}.$ $(A) \ \text{Only statement I is true} \ (B) \ \text{Only statement II is true} \ (C) \ \text{Both} \ (A) \ \text{and} \ (B) \ \text{are true} \ (D) \ \text{None} \ \text{of these}$ $\textbf{83)} \qquad \text{Over the field of real numbers the polynomial} \ x^2 + 25 \ \text{is} \ \dots \dots \ (A)$			
$\begin{array}{ll} b_1x+b_2x^2+\cdots+b_nx^n,\ b_n\neq 0\ \text{will be equal if and only if}\\ (A)\ \textit{m=n} \qquad \qquad (B)\ \textit{a}_i=\textit{b}_i\ \forall i\\ (C)\ \text{both (A) and (B)} \qquad (D)\ \text{none of these} \\ \\ \textbf{81)} \qquad \text{If the ring R is an integral domain, then}\\ (A)\ \textit{R}\ [x]\ \text{is an integral domain}\\ (B)\ \textit{R}\ [x]\ \text{is an integral domain}\\ (C)\ \textit{R}\ [x]\ \text{is a field}\\ (D)\ \textit{R}\ [x]\ \text{is a commutative division ring} \\ \textbf{82)} \qquad \text{Read the following statements and choose the correct option.}\\ \text{Let $R\ [x]$ be the ring of polynomials over a ring R then}\\ \textbf{Statement I: R is commutative if and only if}\\ \qquad \qquad$	80)	• •	(C)
(A) $m=n$ (B) $a_i=b_i \ \forall i$ (C) both (A) and (B) (D) none of these 81) If the ring R is an integral domain, then (A) $R[x]$ is an integral domain (B) $R[x]$ is not an integral domain (C) $R[x]$ is a field (D) $R[x]$ is a commutative division ring 82) Read the following statements and choose the correct option. Let $R[x]$ be the ring of polynomials over a ring R then Statement II: R is commutative if and only if $R[x]$ is commutative. Statement III: R has unity if and if $R[x]$ has unity. (A) Only statement I is true (B) Only statement II is true (C) Both (A) and (B) are true (D) None of these 83) Over the field of real numbers the polynomial $x^2 + 25$ is (A) (A) irreducible			
(C) both (A) and (B) (D) none of these 81) If the ring <i>R</i> is an integral domain, then (A) <i>R</i> [<i>x</i>] is an integral domain (B) <i>R</i> [<i>x</i>] is not an integral domain (C) <i>R</i> [<i>x</i>] is a field (D) <i>R</i> [<i>x</i>] is a commutative division ring 82) Read the following statements and choose the correct option. Let <i>R</i> [<i>x</i>] be the ring of polynomials over a ring <i>R</i> then Statement I: <i>R</i> is commutative if and only if <i>R</i> [<i>x</i>] is commutative. Statement II: <i>R</i> has unity if and if <i>R</i> [<i>x</i>] has unity. (A) Only statement I is true (B) Only statement II is true (C) Both (A) and (B) are true (D) None of these 83) Over the field of real numbers the polynomial <i>x</i> ² + 25 is (A) irreducible			
If the ring <i>R</i> is an integral domain, then (A) <i>R</i> [<i>x</i>] is an integral domain (B) <i>R</i> [<i>x</i>] is not an integral domain (C) <i>R</i> [<i>x</i>] is a field (D) <i>R</i> [<i>x</i>] is a commutative division ring 82) Read the following statements and choose the correct option. Let <i>R</i> [<i>x</i>] be the ring of polynomials over a ring <i>R</i> then Statement I: <i>R</i> is commutative if and only if <i>R</i> [<i>x</i>] is commutative. Statement II: <i>R</i> has unity if and if <i>R</i> [<i>x</i>] has unity. (A) Only statement I is true (B) Only statement II is true (C) Both (A) and (B) are true (D) None of these 83) Over the field of real numbers the polynomial <i>x</i> ² + 25 is (A) (A) irreducible			
 (A) R [x] is an integral domain (B) R [x] is not an integral domain (C) R [x] is a field (D) R [x] is a commutative division ring Read the following statements and choose the correct option. Let R [x] be the ring of polynomials over a ring R then Statement I: R is commutative if and only if R [x] is commutative. Statement II: R has unity if and if R [x] has unity. (A) Only statement I is true (B) Only statement II is true (C) Both (A) and (B) are true (D) None of these Over the field of real numbers the polynomial x²+ 25 is (A) irreducible 	01)		(0)
(B) R [x] is not an integral domain (C) R [x] is a field (D) R [x] is a commutative division ring Read the following statements and choose the correct option. Let R [x] be the ring of polynomials over a ring R then Statement I: R is commutative if and only if R [x] is commutative. Statement II: R has unity if and if R [x] has unity. (A) Only statement I is true (B) Only statement II is true (C) Both (A) and (B) are true (D) None of these 83) Over the field of real numbers the polynomial x²+ 25 is (A) irreducible	81)		(A)
(C) R [x] is a field (D) R [x] is a commutative division ring Read the following statements and choose the correct option. Let R [x] be the ring of polynomials over a ring R then Statement I: R is commutative if and only if R [x] is commutative. Statement II: R has unity if and if R [x] has unity. (A) Only statement I is true (B) Only statement II is true (C) Both (A) and (B) are true (D) None of these 83) Over the field of real numbers the polynomial x²+ 25 is (A) (A) irreducible			
Read the following statements and choose the correct option. Let R [x] be the ring of polynomials over a ring R then Statement I: R is commutative if and only if R [x] is commutative. Statement II: R has unity if and if R [x] has unity. (A) Only statement I is true (B) Only statement II is true (C) Both (A) and (B) are true (D) None of these (A) Over the field of real numbers the polynomial x²+ 25 is (A) (A)		, ,	
Read the following statements and choose the correct option. Let $R[x]$ be the ring of polynomials over a ring R then Statement I: R is commutative if and only if $R[x]$ is commutative. Statement II: R has unity if and if $R[x]$ has unity. (A) Only statement I is true (B) Only statement II is true (C) Both (A) and (B) are true (D) None of these Over the field of real numbers the polynomial $x^2 + 25$ is (A) irreducible			
Let $R[x]$ be the ring of polynomials over a ring R then Statement I: R is commutative if and only if $R[x]$ is commutative. Statement II: R has unity if and if $R[x]$ has unity. (A) Only statement I is true (B) Only statement II is true (C) Both (A) and (B) are true (D) None of these Over the field of real numbers the polynomial $x^2 + 25$ is (A) irreducible	82)	, , ,	(C)
Statement I: R is commutative if and only if R[x] is commutative. Statement II: R has unity if and if R[x] has unity. (A) Only statement I is true (B) Only statement II is true (C) Both (A) and (B) are true (D) None of these Over the field of real numbers the polynomial x²+ 25 is (A) irreducible (A)	02,	·	(0)
R [x] is commutative. Statement II: R has unity if and if R [x] has unity. (A) Only statement I is true (B) Only statement II is true (C) Both (A) and (B) are true (D) None of these Over the field of real numbers the polynomial x²+ 25 is (A) irreducible			
Statement II: R has unity if and if R [x] has unity. (A) Only statement I is true (B) Only statement II is true (C) Both (A) and (B) are true (D) None of these Over the field of real numbers the polynomial x²+ 25 is (A) irreducible		· ·	
 (A) Only statement I is true (B) Only statement II is true (C) Both (A) and (B) are true (D) None of these Over the field of real numbers the polynomial x²+ 25 is (A) irreducible 			
(B) Only statement II is true (C) Both (A) and (B) are true (D) None of these Over the field of real numbers the polynomial $x^2 + 25$ is (A) irreducible			
(D) None of these Over the field of real numbers the polynomial $x^2 + 25$ is (A) irreducible		(B) Only statement II is true	
83) Over the field of real numbers the polynomial $x^2 + 25$ is (A) irreducible			
(A) irreducible			
	83)	· ·	(A)
(R) reducible			
		(B) reducible	

	(C) neither reducible nor reducible	
84)	(D) none of these Let $f(x) = 1 + 2x - 2x^2$ and $g(x) = 2 + 3x + 2x^2$ be two	(B)
04,	members of $Z[x]$, then degree of $f(x) + g(x) =$	
	(A) 0 (B) 1	
	(C) 4 (D) 5	
85)	Consider the ring $R = \{0, 1, 2, 3, 4, 5\}$ modulo 6 and	(D)
	$f(x) = 1 + 2x^3$, $g(x) = 2 + x - 3x^2$ be two polynomials in	
	R[x] of degree 3 and 2 respectively. Then degree of	
	$f(x) + g(x) = \dots$	
	(A) 0 (B) 1	
86)	(C) 5 (D) 4 Which of the following polynomials of $Z[x]$ are irreducible over Z .	(D)
80)	(A) $x^2 + 1$ (B) $x^2 + 4$	(0)
	(C) $x^2 + 25$ (D) All of these	
87)	$f(x) \in F[x]$ a polynomial of degree 2 or 3 is reducible if and only	(A)
- /	if $a \in F$ such that	
	(A) $f(a) = 0$ (B) $f(a) \neq 0$	
	(C) f(a) > 0 $(D) f(a) < 0$	
88)	The fact that $f(a) = 0$ is also expressed by saying that a is	(A)
	(A) a root of the polynomial $f(x)$.	
	(B) a factor of the polynomial $f(x)$.	
	(C) both (A) and (B)	
89)	(D) None of these	(A)
99)	The polynomial $1 + x + 2x^2$ in $Z_3[x]$ (A) is irreducible	(A)
	(B) is reducible	
	(C) is neither reducible nor reducible	
	(D) none of these	
90)	Over the field of complex numbers the polynomial x^2 + 16 is	(B)
	(A) irreducible	
	(B) reducible	
	(C) neither reducible nor reducible (D) none of these	
91)	Over the field of rational numbers the polynomial $x^2 + 2$ is	(A)
,	(A) irreducible	
	(B) reducible	
	(C) neither reducible nor reducible	
	(D) none of these	
92)	Which of the following(s) is/are reducible over.	(D)
	(A) $x^2 + 16$ (B) $x^2 + 25$	
021	(C) $x^2 + 1$ (D) All of these	(D)
93)	Which of the following is irreducible over \mathbb{Z} . (A) $x^2 - 5x + 6$ (B) $x^2 - 7x + 12$	(D)
	(A) $x = 5x + 6$ (B) $x = 7x + 12$ (C) $x^2 = 9x + 20$ (D) None of these	
	$(O) \times (O) \times (O)$	

(A) False (C) Can't say (D) None of these (C) Can't say (D) None of these (D) None of these. (E) is irreducible (B) is reducible (C) is neither reducible nor reducible (D) none of these of the none of these of the none of these (D) none of these of the none of these (94)	Read the following statement and choose the correct option.	(B)
95) Which of the following(s) is/are reducible over \mathbb{Z} . (A) $x^2 - 5x + 6$ (B) $x^2 - 7x + 12$ (C) $x^2 - 9x + 20$ (D) None of these. 96) The polynomial $x^4 + x + 1$ in $Z_2[x]$ (A) is irreducible (C) is neither reducible nor reducible (D) none of these (D) none of these (D) none of these (E) is neither reducible nor reducible (D) none of these (E) is neither reducible nor reducible (D) none of these (E) $(x - x) = x + x + x + x + x + x + x + x + x + x$		Any polynomial of degree 1 is irreducible over a field <i>F</i> .	
Which of the following(s) is/are reducible over \mathbb{Z} . (A) $x^2 - 5x + 6$ (B) $x^2 - 7x + 12$ (C) $x^2 - 9x + 20$ (D) None of these. (B) $x^3 - 7x + 12$ (C) $x^2 - 9x + 20$ (D) None of these. (B) $x^3 - 7x + 12$ (B) $x^3 - 7x + 12$ (C) $x^3 - 7x + 12$ (D) $x^3 - 7x + 12$ (C) $x^3 - 7x + 12$ (D) $x^3 - 7x $		()	
(A) $x^2 - 5x + 6$ (B) $x^2 - 7x + 12$ (C) $x^2 - 9x + 20$ (D) None of these. 96) The polynomial $x^4 + x + 1$ in $Z_2[x]$ (A) is irreducible (B) is reducible (C) is neither reducible nor reducible (D) none of these 97) Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ be a polynomial with integer's coefficients (i.e. $f(x) = R[x]$). Suppose that for some prime number p , $p a_0, p a_1, \dots, p a_{n-1}, p a_n, p^2 $ then $f(x)$ is polynomial over the ring of rationals. (A) neither reducible nor reducible (B) reducible (C) irreducible (D) none of these 98) Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_mx^m$ be any non-zero polynomial in $R[x]$. Then $f(x)$ has degree m if (A) $a_m \neq 0$, $a_i = 0 \ \forall i > m$ (B) $a_m = 0$, $a_i = 0 \ \forall i > m$ (C) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0$ (D) $a_m \neq 0$ (D	05)		(D)
7 The polynomial $x^4 + x + 1$ in $Z_2[x]$ (A) is irreducible (B) is reducible (C) is neither reducible nor reducible (D) none of these (D) none of these (E) Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ be a polynomial with integer's coefficients (i.e. $f(x) \in R[x]$). Suppose that for some prime number p , $p a_0,p a_1,,p a_{n-1},p a_n,p^2 $ then $f(x)$ is polynomial over the ring of rationals. (A) neither reducible nor reducible (B) reducible (C) irreducible (D) none of these (D) none of these (D) none of these (D) $a_n = 0$, $a_i = 0 \forall i > m$ (C) $a_m = 0$, $a_i = 0 \forall i > m$ (C) $a_m = 0$, $a_i = 0 \forall i > m$ (C) $a_m = 0$, $a_i = 0 \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \forall i > m$ (D) $a_i \neq 0$ (D) a_i	95)	Which of the following(s) is/are reducible over \mathbb{Z} .	(D)
7 The polynomial $x^4 + x + 1$ in $Z_2[x]$ (A) is irreducible (B) is reducible (C) is neither reducible nor reducible (D) none of these (D) none of these (E) Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ be a polynomial with integer's coefficients (i.e. $f(x) \in R[x]$). Suppose that for some prime number p , $p a_0,p a_1,,p a_{n-1},p a_n,p^2 $ then $f(x)$ is polynomial over the ring of rationals. (A) neither reducible nor reducible (B) reducible (C) irreducible (D) none of these (D) none of these (D) none of these (D) $a_n = 0$, $a_i = 0 \forall i > m$ (C) $a_m = 0$, $a_i = 0 \forall i > m$ (C) $a_m = 0$, $a_i = 0 \forall i > m$ (C) $a_m = 0$, $a_i = 0 \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \forall i > m$ (D) $a_i \neq 0$ (D) a_i		(A) $x^2 - 5x + 0$ (B) $x^2 - 7x + 12$	
(A) is irreducible (B) is reducible (C) is neither reducible nor reducible (D) none of these (D) none of these (ID) none of these (ID) none of these (IC) the f(x) = $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ be a polynomial with integer's coefficients (i.e. $f(x) \in R[x]$). Suppose that for some prime number p , $p a_0, p a_1, \dots, p a_{n-1}, p a_n, p^2 $ then $f(x)$ is polynomial over the ring of rationals. (A) neither reducible nor reducible (B) reducible (C) irreducible (D) none of these (D) none of these (D) none of these (D) none of these (E) the f(x) = $a_0 + a_1x + a_2x^2 + \cdots + a_mx^m$ be any non-zero polynomial in $R[x]$. Then $f(x)$ has degree m if (A) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (B) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (C) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0 \ \forall i$	06)	(C) $x^2 - 9x + 20$ (D) None of these.	(5)
(B) is reducible (C) is neither reducible nor reducible (D) none of these (D) none of these (D) none of these (D) none of these (i.e. $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ be a polynomial with integer's coefficients (i.e. $f(x) \in R[x]$). Suppose that for some prime number p , $p a_0, p a_1, \dots, p a_{n-1}, p a_n, p^2 $ then $f(x)$ is polynomial over the ring of rationals. (A) neither reducible nor reducible (B) reducible (C) irreducible (D) none of these (D) none of these (D) none of these (D) none of these (E) $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_mx^m$ be any non-zero polynomial in $R[x]$. Then $f(x)$ has degree m if $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_mx^m$ be any non-zero polynomial in $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_mx^m$ be any non-zero polynomial $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_mx^m$ be any non-zero polynomial $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_mx^m$ be any non-zero polynomial $f(x) = a_0 + a_1x + a_2x^2 + a_1x^2 + $	96)		(B)
(C) is neither reducible nor reducible (D) none of these 97) Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ be a polynomial with integer's coefficients (i.e. $f(x) \in R[x]$). Suppose that for some prime number p , $p a_0, p a_1, \dots, p a_{n-1}, p a_n, p^2 $ then $f(x)$ is polynomial over the ring of rationals. (A) neither reducible nor reducible (B) reducible (C) irreducible (D) none of these 98) Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_mx^m$ be any non-zero polynomial in $R[x]$. Then $f(x)$ has degree m if (A) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (B) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (C) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0 \ \forall i > m$ (E) (C) $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0 \ \forall i > m$ (
(D) none of these 97) Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ be a polynomial with integer's coefficients (i.e. $f(x) \in R[x]$). Suppose that for some prime number p , $p a_0, p a_1, \dots, p a_{n-1}, p a_n, p^2 $ then $f(x)$ is polynomial over the ring of rationals. (A) neither reducible nor reducible (B) reducible (C) irreducible (D) none of these 98) Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_mx^m$ be any non-zero polynomial in $R[x]$. Then $f(x)$ has degree m if (A) $a_m \neq 0$, $a_i = 0 \ \forall i > m$ (B) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (C) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0 \ \forall i > m$ (E) $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0 \ \forall i > m$ (E) $a_i \neq 0 \ \forall i > m$ (E) $a_i \neq 0 \ \forall i > m$ (E) $a_i \neq 0 \ \forall i > m$ (E)			
97) Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ be a polynomial with integer's coefficients (i.e. $f(x) \in R[x]$). Suppose that for some prime number p , $p a_0, p a_1, \dots, p a_{n-1}, p a_n, p^2 $ then $f(x)$ is polynomial over the ring of rationals. (A) neither reducible nor reducible (B) reducible (C) irreducible (D) none of these 98) Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_mx^m$ be any non-zero polynomial in $R[x]$. Then $f(x)$ has degree m if (A) $a_m \neq 0$, $a_i = 0 \ \forall i > m$ (B) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (C) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0$, $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq $			
integer's coefficients (i.e. $f(x) \in R$ [x]). Suppose that for some prime number p , $p a_0,p a_1,,p a_{n-1},p a_n,p^2 $ then $f(x)$ is polynomial over the ring of rationals. (A) neither reducible nor reducible (B) reducible (C) irreducible (D) none of these 98) Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_mx^m$ be any non-zero polynomial in $R[x]$. Then $f(x)$ has degree m if (A) $a_m \neq 0$, $a_i = 0 \ \forall i > m$ (B) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (C) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0$ (D)	07\	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(6)
(i.e. $f(x) \in R[x]$). Suppose that for some prime number p , $p a_0, p a_1, \dots, p a_{n-1}, p a_n, p^2 $ then $f(x)$ is polynomial over the ring of rationals. (A) neither reducible nor reducible (B) reducible (C) irreducible (D) none of these 98) Let $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_mx^m$ be any non-zero polynomial in $R[x]$. Then $f(x)$ has degree m if A 0 if A 1 if A 2 if A 3 if A 4 if A 4 if A 5 if A 5 if A 6 if A 5 if A 6 if A 6 if A 6 if A 6 if A 7 if A 8 if A 9	9/)		(C)
$p a_0,p a_1,,p a_{n-1},p a_n,p^2 \text{ then } f(x) \text{ is } \text{ polynomial over the ring of rationals.}}$ $(A) \text{ neither reducible nor reducible}$ $(B) \text{ reducible}$ $(C) \text{ irreducible}$ $(D) \text{ none of these}$ $98 \text{Let } f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m \text{ be any non-zero polynomial in } R[x]. \text{ Then } f(x) \text{ has degree } m \text{ if } (A) a_m \neq 0, a_i = 0 \ \forall i > m $ $(B) a_m = 0, a_i \neq 0 \ \forall i > m $ $(C) a_m = 0, a_i \neq 0 \ \forall i > m $ $(D) a_m \neq 0, a_i \neq 0 \ \forall i > m $ $(D) a_m \neq 0, a_i \neq 0 \ \forall i > m $ $(D) a_m \neq 0, a_i \neq 0 \ \forall i > m $ $(D) p = 4 $ $(C) p = 7 \qquad (D) p = 4 $ $(D) p = 4 $			
the ring of rationals. (A) neither reducible nor reducible (B) reducible (C) irreducible (D) none of these (D) none of these (D) none of these (E) the f(x) = $a_0 + a_1x + a_2x^2 + \cdots + a_mx^m$ be any non-zero polynomial in $R[x]$. Then $f(x)$ has degree m if (A) $a_m \neq 0$, $a_i = 0 \ \forall i > m$ (B) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (C) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (C) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (C) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (C) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (C) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (C) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (C) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (C) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (E) $a_i \neq 0$, $a_i \neq 0$, $a_i \neq 0$, $a_i \neq 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_i \neq 0$,			
(A) neither reducible nor reducible (B) reducible (C) irreducible (C) irreducible (D) none of these (D) none of these (D) none of these (D) none of these (A) $a_m \neq 0$, $a_i = 0 \forall i > m$ (A) $a_m \neq 0$, $a_i = 0 \forall i > m$ (B) $a_m = 0$, $a_i \neq 0 \forall i > m$ (C) $a_m = 0$, $a_i \neq 0 \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \forall i > m$ (C) $a_i \neq 0 \forall i > m$ (D) $a_i \neq 0$ (D) a			
(B) reducible (C) irreducible (D) none of these			
(C) irreducible (D) none of these (D) none of t			
(D) none of these (D) none of the these (D) none of these (D) non			
98) Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_mx^m$ be any non-zero polynomial in $R[x]$. Then $f(x)$ has degree m if $(A) a_m \neq 0, a_i = 0 \ \forall i > m$ $(B) a_m = 0, a_i \neq 0 \ \forall i > m$ $(C) a_m = 0, a_i \neq 0 \ \forall i > m$ $(D) a_m \neq 0,$			
polynomial in $R[x]$. Then $f(x)$ has degree m if $(A) a_m \neq 0, a_i = 0 \ \forall i > m$ $(B) a_m = 0, a_i \neq 0 \ \forall i > m$ $(C) a_m = 0, a_i \neq 0 \ \forall i > m$ $(D) a_m \neq 0, a_i \neq 0, a_i \neq 0 \ \forall i > m$ $(D) a_m \neq 0, a_i \neq 0,$	98)		(A)
(A) $a_m \neq 0$, $a_i = 0 \ \forall i > m$ (B) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (C) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ 99) The polynomial $a_0 + a_1x + a_2x^2 = 2 + 4x + x^2$ is irreducible over Q , if we take (A) $p = 2$ (B) $p = 3$ (C) $p = 7$ (D) $p = 4$ 100) The polynomial $f(x)$ is divisible by $x - a$ then $f(a) =$ (A) $f(a) =$ (A) $f(a) =$ (B) $f(a) =$ (C) $f(a) =$ (A) $f(a) =$ (B) $f(a) =$ (C) $f(a) =$ (B) $f(a) =$ (C) $f(a) =$ (D) $f(a) =$ (E) $f(a) =$ (B) $f(a) =$ (C) $f(a) =$ (D) $f(a) =$ (E) $f(a) =$ (B) $f(a) =$ (B) $f(a) =$ (C) $f(a) =$ (B) $f(a) =$			(* 5)
(B) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (C) $a_m = 0$, $a_i \neq 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ 99) The polynomial $a_0 + a_1x + a_2x^2 = 2 + 4x + x^2$ is irreducible over Q , if we take (A) $p = 2$ (B) $p = 3$ (C) $p = 7$ (D) $p = 4$ 100) The polynomial $f(x)$ is divisible by $x - a$ then $f(a) =$ (A) $f(a) =$ (A) $f(a) =$ (B) $f(a) = a_1$ (C) $f(a) = a_2$ (D) $f(a) = a_2$ (E) $f(a) = a_2$ (C) $f(a) = a_2$ (D) $f(a) = a_2$ (E) $f(a) = a_2$ (D) $f(a) = a_2$ (D) $f(a) = a_2$ (D) $f(a) = a_2$ (E) $f(a) = a_2$ (D) $f(a) = a_2$ (D) $f(a) = a_2$ (E) $f(a) = a_2$ (D) $f(a) = a_2$ (D) $f(a) = a_2$ (D) $f(a) = a_2$ (E) $f(a) = a_2$ (D) $f(a) = a_2$ (D) $f(a) = a_2$ (D) $f(a) = a_2$ (E) $f(a) = a_2$ (D) $f(a) = a_2$ (E) $f(a) = a_2$ (D) $f(a) = a_$			
(C) $a_m = 0$, $a_i = 0 \ \forall i > m$ (D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$ The polynomial $a_0 + a_1x + a_2x^2 = 2 + 4x + x^2$ is irreducible over Q , if we take (A) $p = 2$ (B) $p = 3$ (C) $p = 7$ (D) $p = 4$ 100) The polynomial $f(x)$ is divisible by $x - a$ then $f(a) = \dots$ (A) 2 (B) 5 (C) 0 (D) a 101) If $f(x) = 1 + 2x + 3x^2$ and $g(x) = 7x + 2x^2 + 3x^3$ are two polynomials over (\mathbb{Z}_6 , $+_6$, $*_6$) then $\deg(f(x) + g(x)) = \dots$ (A) 2 (B) 3 (C) 5 (D) 4 102) The zeros of the polynomial $x^2 - 4x - 12$ over field of real numbers are (A) 3, -4 (B) 6, -2			
99) The polynomial $a_0 + a_1x + a_2x^2 = 2 + 4x + x^2$ is irreducible over Q , if we take (A) $p = 2$ (B) $p = 3$ (C) $p = 7$ (D) $p = 4$ 100) The polynomial $f(x)$ is divisible by $x - a$ then $f(a) =$ (A) 2 (B) 5 (C) 0 (D) a 101) If $f(x) = 1 + 2x + 3x^2$ and $g(x) = 7x + 2x^2 + 3x^3$ are two polynomials over (\mathbb{Z}_6 , $+_6$, $*_6$) then $\deg(f(x) + g(x)) =$ (A) 2 (B) 3 (C) 5 (D) 4 102) The zeros of the polynomial $x^2 - 4x - 12$ over field of real numbers are (A) 3, -4 (B) 6, -2			
99) The polynomial $a_0 + a_1x + a_2x^2 = 2 + 4x + x^2$ is irreducible over Q , if we take (A) $p = 2$ (B) $p = 3$ (C) $p = 7$ (D) $p = 4$ 100) The polynomial $f(x)$ is divisible by $x - a$ then $f(a) =$ (A) 2 (B) 5 (C) 0 (D) a 101) If $f(x) = 1 + 2x + 3x^2$ and $g(x) = 7x + 2x^2 + 3x^3$ are two polynomials over (\mathbb{Z}_6 , $+_6$, $*_6$) then $\deg(f(x) + g(x)) =$ (A) 2 (B) 3 (C) 5 (D) 4 102) The zeros of the polynomial $x^2 - 4x - 12$ over field of real numbers are (A) 3, -4 (B) 6, -2			
Q, if we take (A) $p = 2$ (B) $p = 3$ (C) $p = 7$ (D) $p = 4$ 100) The polynomial $f(x)$ is divisible by $x - a$ then $f(a) =$ (A) 2 (B) 5 (C) 0 (D) a 101) If $f(x) = 1 + 2x + 3x^2$ and $g(x) = 7x + 2x^2 + 3x^3$ are two polynomials over (\mathbb{Z}_6 , $+_6$, $*_6$) then $\deg(f(x) + g(x)) =$ (A) 2 (B) 3 (C) 5 (D) 4 102) The zeros of the polynomial $x^2 - 4x - 12$ over field of real numbers are (A) 3, -4 (B) 6, -2	99)	The polynomial $a_0 + a_1x + a_2x^2 = 2 + 4x + x^2$ is irreducible over	(A)
(A) $p = 2$ (B) $p = 3$ (C) $p = 7$ (D) $p = 4$ 100) The polynomial $f(x)$ is divisible by $x - a$ then $f(a) =$ (A) 2 (B) 5 (C) 0 (D) a 101) If $f(x) = 1 + 2x + 3x^2$ and $g(x) = 7x + 2x^2 + 3x^3$ are two polynomials over $(\mathbb{Z}_6, +_6, *_6)$ then $\deg(f(x) + g(x)) =$ (A) 2 (B) 3 (C) 5 (D) 4 102) The zeros of the polynomial $x^2 - 4x - 12$ over field of real numbers are (A) 3, -4 (B) 6, -2			(* ')
100) The polynomial $f(x)$ is divisible by $x - a$ then $f(a) =$ (A) 2 (B) 5 (C) 0 (D) a 101) If $f(x) = 1 + 2x + 3x^2$ and $g(x) = 7x + 2x^2 + 3x^3$ are two polynomials over (\mathbb{Z}_6 , $+_6$, $*_6$) then $\deg(f(x) + g(x)) =$ (A) 2 (B) 3 (C) 5 (D) 4 102) The zeros of the polynomial $x^2 - 4x - 12$ over field of real numbers are (A) 3, -4 (B) 6, -2			
The polynomial $f(x)$ is divisible by $x - a$ then $f(a) =$ (A) 2 (B) 5 (C) 0 (D) a 101) If $f(x) = 1 + 2x + 3x^2$ and $g(x) = 7x + 2x^2 + 3x^3$ are two polynomials over (\mathbb{Z}_6 , + ₆ , * ₆) then $\deg(f(x) + g(x)) =$ (A) 2 (B) 3 (C) 5 (D) 4 102) The zeros of the polynomial $x^2 - 4x - 12$ over field of real numbers are (A) 3, -4 (B) 6, -2		` ' *	
f (a) = (A) 2 (B) 5 (C) 0 (D) a 101) If $f(x) = 1 + 2x + 3x^2$ and $g(x) = 7x + 2x^2 + 3x^3$ are two polynomials over $(\mathbb{Z}_6, +_6, *_6)$ then $\deg(f(x) + g(x)) =$ (A) 2 (B) 3 (C) 5 (D) 4 102) The zeros of the polynomial $x^2 - 4x - 12$ over field of real numbers are (A) 3, -4 (B) 6, -2	100)	(/ 1	(C)
(A) 2 (B) 5 (C) 0 (D) a (B) 101) If $f(x) = 1 + 2x + 3x^2$ and $g(x) = 7x + 2x^2 + 3x^3$ are two polynomials over $(\mathbb{Z}_6, +_6, *_6)$ then $\deg(f(x) + g(x)) = \dots$ (A) 2 (B) 3 (C) 5 (D) 4 (B) 102) The zeros of the polynomial $x^2 - 4x - 12$ over field of real numbers are (A) 3, -4 (B) 6, -2			
(C) 0 (D) a 101) If $f(x) = 1 + 2x + 3x^2$ and $g(x) = 7x + 2x^2 + 3x^3$ are two polynomials over $(\mathbb{Z}_6, +_6, *_6)$ then $\deg(f(x) + g(x)) = \dots$ (A) 2 (B) 3 (C) 5 (D) 4 102) The zeros of the polynomial $x^2 - 4x - 12$ over field of real numbers are (A) 3, -4 (B) 6, -2			
polynomials over $(\mathbb{Z}_6, +_6, *_6)$ then $\deg(f(x) + g(x)) = \dots$ (A) 2 (B) 3 (C) 5 (D) 4 102) The zeros of the polynomial $x^2 - 4x - 12$ over field of real numbers are (A) 3, -4 (B) 6, -2		·	
polynomials over $(\mathbb{Z}_6, +_6, *_6)$ then $\deg(f(x) + g(x)) = \dots$ (A) 2 (B) 3 (C) 5 (D) 4 102) The zeros of the polynomial $x^2 - 4x - 12$ over field of real numbers are (A) 3, -4 (B) 6, -2	101)		(B)
(A) 2 (B) 3 (C) 5 (D) 4 (B) 3 102) The zeros of the polynomial $x^2 - 4x - 12$ over field of real numbers are (A) 3, -4 (B) 6, -2		• • • • • • • • • • • • • • • • • • • •	
(C) 5 (D) 4 102) The zeros of the polynomial $x^2 - 4x - 12$ over field of real numbers are (A) 3, -4 (B) 6, -2			
numbers are (A) 3, -4 (B) 6, -2			
numbers are (A) 3, -4 (B) 6, -2	102)	The zeros of the polynomial $x^2 - 4x - 12$ over field of real	(B)
	-		
		(A) $3, -4$ (B) $6, -2$	
(C) -6, 2 (D) -3, 4		· ·	
103) The characteristic of the ring $(3\mathbb{Z}, +, \times)$ is (C)	103)		(C)
	-		

	(C) 0 (D) none of these	
104)	If F is a field then $F[x]$ is	(A)
	(A) an integral domain (B) a field	
	(C) may not be field (D) none of these	
105)	The zeros of the polynomial $x^2 - 4x - 12$ over the field of real	(C)
	numbers are	
	(A) 1, 2 (B) 2, 3	
	(C) $4, 3$ (D) $-4, -3$	
106)	The characteristic of ring integers $(\mathbb{Z}, +, *)$ is	(C)
	(A) 2 (B) a prime number	
	(C) zero (D) none of these	
107)	If $f(x) = 2x^3 + x^2 + 3x - 2$ and	(A)
	$g(x) = 3x^4 + 2x + 4$ be two polynomials over \mathbb{Z}_6 , then	
	$\deg(f(x) * g(x)) = \dots$	
	(A) 5 (B) 6	
	(C) 7 (D) none of these	
108)	Let $f(x) = 2x^3 + 4x^2 + 3x + 3$ be a polynomial over \mathbb{Z}_5 then f	(B)
	(4) =	
	(A) 0 (B) 2	
	(C) 4 (D) 1	
109)	The characteristic of Boolean ring is	(B)
	(A) 0 (B) 2	
	(C) 4 (D) 1	
110)	If $f(x) \in F[x]$ and $a \in F$, for a field F , then $x - a$ divides $f(x)$ if and	(A)
	only if	
	$(A) f(a) = 0 (B) f(a) \neq 0$	
	$(C) f(a) = 1 (D) f(a) = \infty$	