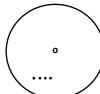
## Arts Commerce and Science college Bodwad, Dist: Jalgaon Department of Chemistry

## **Question Bank**


## S.Y.B. Sc -Sem-III -2020-21

## Chemistry -III (CH-304:SEC-1) Basic analytical chemistry

| 1. | Analyt | ical chemistry is study of                        |
|----|--------|---------------------------------------------------|
|    | -      | Mathematical expression                           |
|    | ,      | Structures of molecules                           |
|    | ,      | Shapes and size of molecules                      |
|    | ,      | Instrumental methods                              |
|    | •      |                                                   |
| 2. | Entire | analysis of sample constitutes                    |
|    | a)     | Separation                                        |
|    | b)     | Identification                                    |
|    | c)     | Quantification                                    |
|    | d)     | All of the above                                  |
| 3. | Qualit | ative analysis Identifies                         |
| ٥. | _      | Quality of analytes                               |
|    | -      | Amount of analytes                                |
|    |        | Concentration of analytes                         |
|    | ,      | None of the above                                 |
|    | ,      |                                                   |
| 4. | Quanti | tative analysis determines                        |
|    | a)     | Quality of analytes                               |
|    | b)     | Amount of analytes                                |
|    | c)     | Concentration of analytes                         |
|    | d)     | Both b and c                                      |
| 5  | Analyt | ical chemistry has                                |
| ٠. | -      | Specific subjective nature                        |
|    | ,      | Interdisciplinary nature                          |
|    |        | Both a and b                                      |
|    | /      | None of the above                                 |
| _  |        |                                                   |
| 6. | -      | ical chemistry plays important role in            |
|    | ,      | Mathematical science                              |
|    | ,      | Life sciences                                     |
|    | *      | Earth science                                     |
|    | d)     | Pharmaceutical science                            |
| 7. | Measu  | rement of drugs and metabolites is carried out in |
|    |        | Physical chemistry                                |
|    | ,      | Organic chemistry                                 |
|    |        | Analytical chemistry                              |
|    |        | Inorganic chemistry                               |

- 8. Analytical chemistry has importance in...
  - a) Determining adulterants
  - b) Soil testing
  - c) Water testing
  - d) Medical technology and research
  - e) Harvested crop testing
  - f) All of the above
- 9. Spectroscopy is one of the type of ...
  - a) Physical chemistry
  - b) Inorganic chemistry
  - c) Computational chemistry
  - d) Analytical chemistry
- 10. The determination of the absolute or relative abundance of present sample is
  - a) Quantitative analysis
  - b) Qualitative analysis
  - c) Spectroscopical analysis
  - d) None of the above
- 11. An acid base titration is an example of ...
  - a) Quantitative analysis
  - b) Qualitative analysis
  - c) Spectroscopical analysis
  - d) None of the above
- 12. Identification of elements in a sample is ...
  - a) Quantitative analysis
  - b) **Qualitative analysis**
  - c) Spectroscopical analysis
  - d) None of the above
- 13. To treat and diagnose the disease of a patient uses...
  - a) Quantitative analysis
  - b) Qualitative analysis
  - c) Spectroscopical analysis
  - d) None of the above
- 14. Forensic science use
  - a) Quantitative analysis
  - b) Qualitative analysis
  - c) Spectroscopical analysis
  - d) None of the above
- 15. The process of extracting representative piece of material from larger amount is called
  - a) Separation
  - b) Quantitative analysis
  - c) Fragmentation
  - d) Sampling

- 16. The information used to identify a sample includes...
  - a) Sample description
  - b) Time sample was taken
  - c) Location sample was taken from
  - d) Person who took the sample
  - e) Method used to select the sample
  - f) All of the above
- 17. Accuracy is
  - a) Closeness of a result to the true value
  - b) Closeness of all possible measurements
  - c) Closeness to the terminal value
  - d) None of the above
- 18. Precision is ....
  - a. When all results are close to one another
  - b. When results are close to true values
  - c. When results are close to mean value
  - d. When results are apart from each other
- 19. The dots in a circle close together but apart from centre point then it is....
  - a) More accurate but less precise
  - b) More precise and less accurate
  - c) Both accuracy and precision is high
  - d) None of the above



- 20. The number of important single digits is called
  - a) True number
  - b) False number
  - c) Significant number
  - d) Non-significant number
- 21. Non zero digits are always...
  - a) True number
  - b) False number
  - c) Significant number
  - d) Non-significant number
- 22. Rounding off is ...
  - a) Addition of numbers
  - b) Simple number by keeping its value close to what it was.
  - c) Subtracting the number
  - d) Eliminating error in the number
- 23. The difference between the computed value and corrected value is called...
  - a) Rounding off of number
  - b) Significant number
  - c) Error
  - d) Non-significant number

- 24. The absolute error is...
  - a) The difference between the measured value and true value.
  - b) The divide of measured value and true value
  - c) The multiplication of measured value and true value
  - d) The addition of measured value and true value
- 25. The relative error is...
  - a) The difference between the measured value and true value.
  - b) The divide of measured value and true value
  - c) The multiplication of measured value and true value
  - d) The addition of measured value and true value
- 26. Faulty calibration is a type of...
  - a) Method error
  - b) Personal error
  - c) Instrumental error
  - d) None of the above
- 27. Wrong identification of colour of the solution at the end point of titration is...
  - a) Method error
  - b) Personal error
  - c) Instrumental error
  - d) None of the above
- 28. Minimisation of errors can be done by....
  - a) Calibration of apparatus
  - b) Performing blank titration
  - c) Parallel determination
  - d) Standard addition
  - e) Isotopic dilution
  - f) All of the above
- 29. The document which provide detailed information of chemical products is called...
  - a) Laboratory manual
  - b) Laboratory rules
  - c) Material safety data sheet
  - d) Laboratory safety data sheet
- 30. The temperature and condition that can cause chemical to catch fire is given in MSDS under section of ......
  - a) Reactivity data
  - b) Toxicology data
  - c) Fire and explosion hazard
  - d) Physical data
- 31. The short term and long-term health effects from exposure to the chemical products is given in MSDS under section of.....
  - a) Reactivity data
  - b) Toxicology data
  - c) Fire and explosion hazard

|            | d) Physical data                                                                                       |
|------------|--------------------------------------------------------------------------------------------------------|
| 32. In p   | precipitation titrations                                                                               |
|            | A) Formation of precipitate occurs                                                                     |
|            | B) Formation of insoluble substance occurs                                                             |
|            | C) Formation of soluble salt occurs                                                                    |
|            | D) A and B Both                                                                                        |
| 33.Indi    | cator used in precipitate titration is                                                                 |
|            | A) K <sub>2</sub> CrO <sub>4</sub>                                                                     |
|            | B) Ferric alum                                                                                         |
|            | C) Fluorescein                                                                                         |
|            | D) All of these                                                                                        |
| 34. Pot    | assium chromate is used as indicator in                                                                |
|            | A) Fajan's method                                                                                      |
|            | B) Mohr's method                                                                                       |
|            | C) Volhard's method                                                                                    |
|            | D) All of these                                                                                        |
| 35. In I   | Fajan's method colour change of indicator is due to                                                    |
|            | A) Coloured precipitate formation                                                                      |
|            | B) Adsorption of indicator anions                                                                      |
|            | C) Water soluble coloured complex formation                                                            |
|            | D] None of these                                                                                       |
| 36.Ads     | orption indicators are used for detection of end point inmethod.                                       |
|            | A) Fajan's method                                                                                      |
|            | B)Mohr's method                                                                                        |
|            | C) Volhard's method                                                                                    |
|            | D) All of these                                                                                        |
| 37. In N   | Mohr's method colour change of indicator is due to                                                     |
|            | A) Coloured precipitate formation                                                                      |
|            | B) Adsorption of indicator anions                                                                      |
|            | C) Water soluble coloured complex formation                                                            |
|            | D) None of these                                                                                       |
| 38. For is | preparation of 1000 ml N solution of AgNO <sub>3</sub> , quantity of AgNO <sub>3</sub> required grams. |

| A) 107                        | .8                                                                                      |
|-------------------------------|-----------------------------------------------------------------------------------------|
| B) 169                        | .9                                                                                      |
| C) 10.7                       | 78                                                                                      |
| D) 16.9                       | 99                                                                                      |
| 39] Fe <sup>+3</sup> is use   | d as indicator in                                                                       |
| A) Faja                       | an's method                                                                             |
| B) Mol                        | hr's method                                                                             |
| C) Vol                        | hard's method                                                                           |
| D) All                        | of these                                                                                |
| 40. In which rafter equivalen | method Ferric alum is used as an indicator, when excess of titrant SCN added ace point. |
| A)                            | Fajan's method                                                                          |
| B)                            | Mohr's method                                                                           |
| C)                            | Volhard's method                                                                        |
| D)                            | all of these                                                                            |
| 41. Which of                  | the following are applications of precipitation titration.                              |
| A)                            | Determination of halides and thiocyanates                                               |
| B)                            | Determination of Silver in Silver alloy                                                 |
| C)                            | Determination of Sulphate in Urine                                                      |
| D)                            | All of these                                                                            |
| 42is an                       | unknown sample can be determined by titration with standard AgNO <sub>3</sub> solution. |
| A)                            | Chloride                                                                                |
| B)                            | Bromide                                                                                 |
| C)                            | Iodide                                                                                  |
| D)                            | All of these                                                                            |
| 43. Which indi                | icator used in determination of Sulphate in Urine.                                      |
| A)                            | Thorin indicator                                                                        |
| B)                            | Fluorescein                                                                             |
| C)                            | $K_2CrO_4$                                                                              |
| D)                            | Ferric alum                                                                             |
| 44. Determinat                | tion ofis the application of precipitation titration.                                   |
| A)                            | halides                                                                                 |
| B)                            | silver                                                                                  |
|                               |                                                                                         |

| C) thiocyanates                                    |                      |
|----------------------------------------------------|----------------------|
| D) All of these                                    |                      |
| 45. Which indicator used in determination of this  | ocyanates.           |
| A) Fe(III)                                         |                      |
| B) Fluorescein                                     |                      |
| C) Ferric alum                                     |                      |
| D) Thorin                                          |                      |
| 46. Which indicator used in Fajan's method.        |                      |
| 1) Fluorescein                                     |                      |
| 2) Ferric alum                                     |                      |
| 3) Thorin                                          |                      |
| 4) Fe(III)                                         |                      |
| 47. In which method Fluorescein is used as an inc  | dicator.             |
| 1) Volhard's method                                |                      |
| 2) Fajan's method                                  |                      |
| 3) Mohr's method                                   |                      |
| 4) Allof these                                     |                      |
| 48. In which method adsorption like eosin is used  | 1.                   |
| 1) Volhard's method                                |                      |
| 2) Fajan's method                                  |                      |
| 3) Mohr's method                                   |                      |
| 4) All of these                                    |                      |
| 49. In Fajan's method adsorption indicator like fl | uorescein oris used. |
| 1) Ferric alum                                     |                      |
| 2) eosin                                           |                      |
| 3) Thorin                                          |                      |
| 4) Fe(III)                                         |                      |
| 50. Which indicator is used as adsorption indicate | or.                  |
| 1) fluorescein or eosin                            |                      |
| 2) Thorin                                          |                      |
| 3) Fe(III)                                         |                      |
| 4) Ferric alum                                     |                      |

51. Estimation of chloride by using.....method.

| 51. W   | hich method is used for preparation of AgNO <sub>3</sub> solution.                  |
|---------|-------------------------------------------------------------------------------------|
|         | 1) From metallic silver                                                             |
|         | 2) From solid AgNO <sub>3</sub>                                                     |
|         | 3) Both A and B                                                                     |
|         | 4) Non of these                                                                     |
| 52. Sta | andardisation of AgNO <sub>3</sub> solution by usingmethod.                         |
|         | 1) Mohr's                                                                           |
|         | 2) Fajan's                                                                          |
|         | 3) Volhard's                                                                        |
|         | 4) All of these                                                                     |
| 53. Es  | timation of chloride by usingmethod.                                                |
|         | 1) Fajan's                                                                          |
|         | 2) Volhard's                                                                        |
|         | 3) Mohr's                                                                           |
|         | 4) All of these                                                                     |
| 54. 10  | 00 ml of 1 N AgNO <sub>3</sub> solution containgrams of AgNO <sub>3</sub> .         |
|         | 1) 169.9                                                                            |
|         | 2) 16.99                                                                            |
|         | 3) 4.25                                                                             |
|         | 4) None of these                                                                    |
| 55. 10  | 00 ml of 0.1 N AgNO <sub>3</sub> solution containgrams of AgNO <sub>3</sub> .       |
|         | 1) 169.9                                                                            |
|         | 2) 16.99                                                                            |
|         | 3) 4.25                                                                             |
|         | 4) None of these                                                                    |
| 56. Wl  | hich of the following is suitable indicator for strong acid strong base titrations? |
|         | a) Methyl red.                                                                      |
|         | b) Bromothymol blue.                                                                |
|         | c) Phenolphthalein.                                                                 |

1) Volhard's

2) Mohr's

3) Fajan's

4) All of these

|       | d) weak acid-Weak base.                                       |
|-------|---------------------------------------------------------------|
| 58.   | The suitable indicator for weak acid strong base titration is |
|       | a) Methyl orange.                                             |
|       | b) Methyl red.                                                |
|       | c) Phenolphthalein.                                           |
|       | d) Bromothymol blue.                                          |
| 59. ' | Γransition range of indicator is defined as                   |
|       | a) PH=pkin +1                                                 |
|       | b) pH=pki -1                                                  |
|       | c) PH=pkin +_1                                                |
|       | d) PH=pkin                                                    |
| 60.   | Γransition range ofis from 3.1 to 4.4                         |
|       | a) Methyl red.                                                |
|       | b) Methyl orange.                                             |
|       | c) Bromothymol blue.                                          |
|       | d) Phenolphthalein.                                           |
| 61.   | Γransition range of Phenolphthalein is                        |
|       | a) 8.3 to 10.                                                 |
|       | b) 6.0 to 7.6                                                 |
|       | c) 4.2 to 6.3                                                 |
|       | d)3.1 to 4.4                                                  |
| 62.   | During strong acid strong base titration.                     |
|       | a) PH at start is 2.87                                        |
|       | b) PH at equivalence point is 7                               |
|       | c) PH increases sharply from 7.1 to 10.3 pH units.            |
|       | d) All of above.                                              |
| 63.   | During acid base titration                                    |
|       | a) There is formation of salt and water.                      |

d) All of these.

a) strong acid-strong base.

b) Weak acid-Strong acid.

c) Strong acid- Weak base.

57. Titrations of acetic acid and NaOH is an example of ..... titration

|        | b) H+ ion Concentration changes continuously.                                                            |
|--------|----------------------------------------------------------------------------------------------------------|
|        | c) PH of solution changes continuously.                                                                  |
|        | d) All of above.                                                                                         |
|        | Then number of milliequivalents of acid is equal to number of milliequivalents of base ,it ed            |
|        | a) End point.                                                                                            |
|        | b) Neutralization point .                                                                                |
|        | c) Equivalence point.                                                                                    |
|        | d) None of these.                                                                                        |
| 55. Tł | ne colour change of indicator from colourless to pink is shown by                                        |
|        | a) Methyl red.                                                                                           |
|        | b) Methyl orange.                                                                                        |
|        | c) Phenolphthalein.                                                                                      |
|        | d) Bromothymol blue.                                                                                     |
| 56. Fa | alse statement regarding acid base indicators is                                                         |
|        | a) They are weak organic acids or bases.                                                                 |
|        | b) They show colour change at a particular PH.                                                           |
|        | c)They exist in two forms.                                                                               |
|        | d) Their colour changes due to change in PH.                                                             |
| 67. T  | he best indicator for strong acid strong base titration is                                               |
|        | a) Bromothymol blue.                                                                                     |
|        | b) Methyl red.                                                                                           |
|        | c) Methyl orange.                                                                                        |
|        | d) Phenolphthalein.                                                                                      |
|        | or titration of 0.1 N acetic acid and 0.1 N NaO, PH at start and PH at equivalence point a respectively. |
|        | a) 2.87 and 8.7                                                                                          |
|        | b) 1.0 and 7.0                                                                                           |
|        | c) 8.7 and 2.87                                                                                          |
|        | d) 7.0 and 1.0                                                                                           |
| 69     | is the stage of in the acid base titration at which indicator shows colour change .                      |
|        | a) Equivalence point.                                                                                    |
|        | b) Neutralization point.                                                                                 |

|             | c) End point .                                                                                                   |
|-------------|------------------------------------------------------------------------------------------------------------------|
|             | d) All of these.                                                                                                 |
| 70. T       | he transition range of Bromothymol blue is                                                                       |
|             | a) 8.3 to 10                                                                                                     |
|             | b) 6.0 to 7.6                                                                                                    |
|             | c) 4.2 to 6.3                                                                                                    |
|             | d) 3.1 to 4.4                                                                                                    |
| 71. T       | he titration of HCl( Hydrochloric acid ) and NaOH is an example of titration.                                    |
|             | a) Strong acid-Strong base.                                                                                      |
|             | b) weak acid-Strong base.                                                                                        |
|             | c) Strong acid-weak base.                                                                                        |
|             | d) weak acid-Weak base.                                                                                          |
| 72<br>exact | is the stage in acid base titration at which solution is neutral and PH of solution is by 7.                     |
|             | a) End point.                                                                                                    |
|             | b) Equivalence point.                                                                                            |
|             | c) Neutralization point .                                                                                        |
|             | d) None of these.                                                                                                |
|             | Thich important method for the determination of nitrogen in proteins and other organic ound containing nitrogen. |
|             | a) Titration of amino acids.                                                                                     |
|             | b) Saponification of oils and fats.                                                                              |
|             | c) purity of aspirin.                                                                                            |
|             | d) Kjeldahl Analysis.                                                                                            |
| 74. T       | ransition range ofis form of 4.2 to 6.3                                                                          |
|             | a) Methyl red.                                                                                                   |
|             | b) Methyl orange.                                                                                                |
|             | c) Phenolphthalein.                                                                                              |
|             | d) Bromothymol blue.                                                                                             |
| 75. W       | Thich of the suitable indicator for weak acid strong base titration.                                             |

a) Methyl red.

b) Methyl orange.

c) Phenolphthalein.

| 76. V         | Thich of the following is responsible for the acidic PH of normal rainwater. |
|---------------|------------------------------------------------------------------------------|
|               | a) CO2                                                                       |
|               | b) NO <sub>2</sub> .                                                         |
|               | c) $SO_2$ .                                                                  |
|               | d) NH <sub>3</sub> .                                                         |
| 77. A         | solution of known Concentration is the definition of a                       |
|               | a) Buffer solution.                                                          |
|               | b) Standard solution.                                                        |
|               | c) Neutral solutions                                                         |
|               | d) standard solutions.                                                       |
| 78. V         | Thich is correct sequence of assay of aspirin.                               |
|               | a) Aspirin + 2,3 drops of Phenolphthalein+NaOH solution+ethanol.             |
|               | b) Aspirin+NaOH solution+ ethanol+ 2,3 drop Phenolphthalein.                 |
|               | c) Aspirin + ethanol + 2,3 drop Phenolphthalein + NaOH solution.             |
|               | d) Aspirin + NaOH solution+ ethanol+ 2,3 drop of Phenolphthalein             |
| <b>79.</b> Io | on exchange chromatography based on                                          |
|               | a. Electrostatic attraction.                                                 |
|               | b. Electrical mobility of ionic species.                                     |
|               | c. Adsorption chromatography.                                                |
|               | d. Partition chromatography.                                                 |
| 80. I         | n column chromatography false statement is                                   |
|               | a. Silica Gel or Alumina is used for packing the column.                     |
|               | b. There should not be their gaps in column.                                 |
|               | c. Column should be allowed to dry.                                          |
|               | d. Eluting solvent is continuously added from top.                           |
|               |                                                                              |
| 81. Iı        | descending technique of paper chromatography                                 |
|               | a. Solvent moves against gravitational force.                                |
|               |                                                                              |
|               | b. Solvent moves up the paper.                                               |

d) All of above

| d. Time required is more.                                                   |  |  |  |  |
|-----------------------------------------------------------------------------|--|--|--|--|
| 82. Thin layer chromatography is                                            |  |  |  |  |
| a. Partition chromatography.                                                |  |  |  |  |
| b. Ion exchange chromatography.                                             |  |  |  |  |
| c. Adsorption chromatography.                                               |  |  |  |  |
| d. Gel permiation chromatography.                                           |  |  |  |  |
| 83. In thin layer chromatography                                            |  |  |  |  |
| a. Best lines cannot be drawn with pencil.                                  |  |  |  |  |
| b. Only glass plate for used.                                               |  |  |  |  |
| c. More time and more amount of mixture is required.                        |  |  |  |  |
| d. Cost of recruitments is high.                                            |  |  |  |  |
| 84. Correct statement about chromatography is                               |  |  |  |  |
| a. Time required is less.                                                   |  |  |  |  |
| b. Costly solvents are required.                                            |  |  |  |  |
| c. Selection of solvent is easy.                                            |  |  |  |  |
| d. Skillful operation are not essential.                                    |  |  |  |  |
| 85. Advantage of chromatography is                                          |  |  |  |  |
| a. It is perfect and non tedious method.                                    |  |  |  |  |
| b. Components having same physical or chemical properties can be separated. |  |  |  |  |
| c. Apparatus required are simple.                                           |  |  |  |  |
| d. All of the above.                                                        |  |  |  |  |
| 86. Paper chromatography separates molecule according to their              |  |  |  |  |
| a. Molecular size b. Polarity                                               |  |  |  |  |
| c. Solubility d. Matrix                                                     |  |  |  |  |
| 87. Column chromatography separates molecule according to their             |  |  |  |  |
| <b>a. Adsorption.</b> b. Molecular size.                                    |  |  |  |  |
| c. Solubility. d. Matrix.                                                   |  |  |  |  |
| 88. Column chromatography is type of chromatography                         |  |  |  |  |
| a. Partition b. Adsorption                                                  |  |  |  |  |
| c. Ion exchange. d. b Or c.                                                 |  |  |  |  |
| 89. RF value of substance changes with change in                            |  |  |  |  |

| c. Solvent.                                                                                                                                                | d. Concentration of compound.                        |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|
| 90. Which is not the requirement of good developing solvent?                                                                                               |                                                      |  |  |  |  |
| a. It must be chemically in                                                                                                                                | a. It must be chemically inert.                      |  |  |  |  |
| b. It should not be viscous                                                                                                                                | •                                                    |  |  |  |  |
| c. It should react with so                                                                                                                                 | lutes to be separated.                               |  |  |  |  |
| d. It should not be chemica                                                                                                                                | ally inert.                                          |  |  |  |  |
| 91. What is the maximum RF valu                                                                                                                            | ue for any compound in paper chromatography          |  |  |  |  |
| a. 0.1. <b>b. 1.0</b>                                                                                                                                      | c. 10.0 d. 0.5.                                      |  |  |  |  |
| 92. In Ion exchange chromatogra                                                                                                                            | phy separation of component is based on exchange of  |  |  |  |  |
| a. Ion of similar charge.                                                                                                                                  | b. Ion of Opposite charge.                           |  |  |  |  |
| c. Mass of ion.                                                                                                                                            | d. Size of Ion.                                      |  |  |  |  |
| 93. The factor affecting RF value                                                                                                                          | is                                                   |  |  |  |  |
| a. pH of solution.                                                                                                                                         | b. Nature of paper.                                  |  |  |  |  |
| c. Nature of solvent.                                                                                                                                      | d. All of the above.                                 |  |  |  |  |
| 94. In TLC supporting material us                                                                                                                          | se on glass plate is                                 |  |  |  |  |
| a. CuSO4 are Al2O3                                                                                                                                         | b. CaSO4 or Al2O3                                    |  |  |  |  |
| c. CdSO4 Or FeSO4                                                                                                                                          | d. MgSO4 aur MgO.                                    |  |  |  |  |
| 95. Using the paper chromatography the RF value of xanthophyll and chlorophyll pigments are 0.7 and 0.3 respectively, then what is proof for this pigment. |                                                      |  |  |  |  |
| a. Xanthophyll are more so                                                                                                                                 | a. Xanthophyll are more soluble than chlorophyll.    |  |  |  |  |
| b. Chlorophyll has larger r                                                                                                                                | b. Chlorophyll has larger molecule than xanthophyll. |  |  |  |  |
| c. Chlorophyll has travelled further than xanthophyll.                                                                                                     |                                                      |  |  |  |  |
| d. Chlorophyll is more polar than than xanthophyll.                                                                                                        |                                                      |  |  |  |  |
| 96. Paper chromatography is example ofchromatography.                                                                                                      |                                                      |  |  |  |  |
| a. Partition chromatogra                                                                                                                                   | <b>phy</b> . b. Adsorption.                          |  |  |  |  |
| c. Ion exchange.                                                                                                                                           | d. Gel.                                              |  |  |  |  |
| 97. Thin layer chromatography is chromatography                                                                                                            |                                                      |  |  |  |  |
| a. Partition chromatograph                                                                                                                                 | y. <b>b. Adsorption.</b>                             |  |  |  |  |
| c. Gel. d. Ion exchange.                                                                                                                                   |                                                      |  |  |  |  |
| c. Gel.                                                                                                                                                    | d. Ion exchange.                                     |  |  |  |  |

b. Size of jar.

a. Size of paper.

| a. Solvent front to solute.                                                          | b. compound to solvent front. |  |
|--------------------------------------------------------------------------------------|-------------------------------|--|
| c. Solute to salute front.                                                           | d. Solvent to compound.       |  |
| 99. which of the following is not used in packing of column in column chromatography |                               |  |
| a. Silica Gel.                                                                       | b. Alumina.                   |  |
| c. MgO.                                                                              | d. Copper sulphate.           |  |
| 100. the solution coming out of column                                               | at the bottom and is called   |  |
| a. Elute.                                                                            | b. Alute.                     |  |
| c. Solute.                                                                           | d. Solvent.                   |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |
|                                                                                      |                               |  |