QN		Ans
	FYBSc Sem1 Mathematics Paper I	
	Ouestion Paper for internal exam (For 20marks)	
1	A system of linear equations $AX = B$ is said to be non-homogeneous. If B is	B
	(A) Null Matrix (B) Non zero matrix (C) Singular matrix (D) None of these	
2	A system of linear equations $AX = B$ is said to be consistent if system has	C
	(A) No solution (B) Unique solution (C) Solution (D) None of these	
	(T) To solution (D) enque solution (C) solution (D) Tone of these	
3	A system of linear equations $AX = B$ is said to be inconsistent if system has	Α
	(A)No solution (B) Unique solution (C) Solution (D) None of these	
1	A system of linear equations $AY = R$ is said to be consistent if system has	B
+	A system of linear equations $AA = D$ is said to be consistent in system has	D
	(A) $\rho(A) \neq \rho(A, B)$ (B) $\rho(A) = \rho(A, B)$ (C) $\rho(A) < \rho(A, B)$ (D) None of these	
5	A system of linear equations $AX = B$ is said to be inconsistent if system has	Α
	(A) $\rho(A) \neq \rho(A, B)$ (B) $\rho(A) = \rho(A, B)$ (C) $\rho(A) < \rho(A, B)$ (D) None of these	
6	A system of linear equations $AX = B$ of <i>n</i> unknowns such that $\rho(A) = \rho(A, B) = n$ then	B
	system has solution.	
	(A)No (B) Unique (C) Infinite (D) None of these	
7	A system of linear equations $AY = B$ of <i>n</i> unknowns such that $a(A) = a(A, B) < n$ then	C
7	system has solution.	C
	(A)No (B) Unique (C) Infinite (D) None of these	

8	A homogeneous system of three linear equations in three unknowns has a unique solution if	В
	(A) $ A = 0$ (B) $ A \neq 0$ (C) $ A = 1$ (D) None of these	
9	A homogeneous system of three linear equations in three unknowns has a trivial solution if	B
	(A) $ A = 0$ (B) $ A \neq 0$ (C) $ A = 1$ (D) None of these	
10	A homogeneous system of three linear equations in three unknowns has a infinite number of solution if	A
	(A) $ A = 0$ (B) $ A \neq 0$ (C) $ A = 1$ (D) None of these	
11	A homogeneous system of three linear equations in three unknowns has a non trivial solution if	A
	(A) $ A = 0$ (B) $ A \neq 0$ (C) $ A = 1$ (D) None of these	
12	If <i>A</i> is non singular matrix then solution of system of linear equations $AX = B$ is given by	С
	(A) $X = BA^{-1}$ (B) $X = AB$ (C) $X = A^{-1}B$ (D) None of these	
13	If <i>A</i> is an orthogonal matrix if $ A = \dots$	С
	(A) I (B) 0 (C) ± 1 (D) None of these	
14	If A is an orthogonal matrix then $A^{-1} = \dots$	B
	(A) A (B) A' (C) I (D) None of these	
15	The product of two orthogonal matrices is	Α
	(A) Orthogonal (B) Not orthogonal (C) Proper orthogonal (D) None of these	

16	If $A = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}$ then A is	B
	(A) Improper orthogonal (B) Proper orthogonal (C) Not orthogonal (D) None of these	
17	If $A = \begin{bmatrix} cos\theta & sin\theta \\ sin\theta & -cos\theta \end{bmatrix}$ then A is (A) Improper orthogonal (B) Proper orthogonal (C) Not orthogonal (D) None of these	A
18	Let <i>A</i> be a nonzero square matrix and <i>X</i> be a nonzero (vector) column matrix. If there exist a number λ such that $AX = \lambda X$ then λ is called of the matrix <i>A</i> . (A)Eigen vector (B)Eigen value (C) Not eigen value (D) None of these	B
19	Let <i>A</i> be a nonzero square matrix and <i>X</i> be a nonzero (vector) column matrix. If there exist a number λ such that $AX = \lambda X$ then <i>X</i> is called of the matrix <i>A</i> . (A)Eigen vector (B) Eigen value (C) Not eigen value (D) None of these	A
20	Let <i>A</i> be a nonzero square matrix then characteristic polynomial of <i>A</i> is (A) $ A - \lambda I = 1$ (B) $ A - \lambda I = 0$ (C) $ A - \lambda I $ (D) $(A - \lambda I)$	С
21	Let <i>A</i> be a nonzero square matrix then characteristic Equation of <i>A</i> is (A) $(A - \lambda I) = 0$ (B) $ A - \lambda I = 0$ (C) $ A - \lambda I $ (D) None of these	B
22	Let <i>A</i> is non zero square matrix <i>k</i> is a non zero scalar. If λ is eigen value of <i>A</i> then eigen value of <i>kA</i> is (A) $k\lambda$ (B) λ (C) $\frac{k}{\lambda}$ (D) None of these	A
23	If λ is an eigen value of a non singular matrix A then an eigen value of A^m is (A) λ (B) λ^m (C) 2λ (D) None of these	B

24	If λ is an eigen value of a non singular matrix A then an eigen value of A^{-1} is	В
	(A) λ (B) $\frac{1}{\lambda}$ (C) $-\lambda$ (D) None of these	
25	If λ is an eigen value of a non singular matrix A then an eigen value of $adjA$ is	A
	(A) $\frac{ A }{\lambda}$ (B) $\lambda A $ (C) $\frac{\lambda}{ A }$ (D) None of these	
26	If λ is an eigen value of a non singular matrix A then an eigen value of A^2 is	В
	(B) λ (B) λ^2 (C) 2λ (D) None of these	
	r0 01	
27	If $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$ then the characteristic polynomial of A is	В
	(A) $\lambda^2 - 5\lambda + 8$ (B) $\lambda^2 - 5\lambda + 4$ (C) 2λ (D) None of these	
28	If origin is shifted to the point (h, k) the direction of axes remains same then translation of point (x, y) is	B
	(A) $(x - h, y - k)$ (B) $(x + h, y + k)$ (C) (x, y) (D) None of these	
29	The translation of the point (x, y) by h units in the x-direction and k units in y direction is	Α
	(A)(x + h y + k) (B)(x - h y - k) (C)(x y) (D) None of these	
	(1)(x + n, y + n) (D)(x + n, y + n) (C)(x, y) (D) Hole of these	
30	The translation of the point $(2,3)$ by 3 units in the x-direction and 4 units in y	С
	(A) $(-5,7)$ (B) $(7,5)$ (C) $(5,7)$ (D) None of these	