Sr. No.	FYBSc Mathematics Paper III MTH 103 (A): Co-ordinate Geometry Question Paper for internal exam (For 20marks)	Answer
1	Determine nature of conic is $8 x^{2}-24 x y+15 y^{2}-48 x-$ $487=0 \quad$ given by A)Parabola B)Ellipse C)Hyperbola D)None of these	C
2	Determine nature of conic is $536 x^{2}+24 x y+29 y^{2}-10 x-$ $6 y-3=0$ given by A)Parabola B)Ellipse C)Hyperbola D)None of these	B
3	Determine nature of conic is $5 x^{2}-6 x y+5 y^{2}-10 x-6 y-$ $3=0$ given by A)Parabola B)Ellipse C)Hyperbola D)None of these	B
4	True or false .Distance Between Two points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}($ $\left.x_{2}, y_{2}, z_{2}\right)$ is given by $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}$ A)True B)False	A
5	True or false .Relation between direction cosines: $l^{2}+m^{2}+$ $n^{2}=2$ A)True B)False	B
6	True or False . If a, b and c any numbers such that they are proportional to l, m and n respectively then a, b and c are called as direction ratios. A)True B)False	A
7	True or false .If $l_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1}$ and $l_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}$ are direction cosines of any two lines making an angle θ. then $\cos \theta=$ $l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}$ A)True B)False	A
8	True or false .Relation between direction cosines: $l^{2}+m^{2}+$ $n^{2}=1$ A)True B)False	A
9	If $l_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1}$ and $l_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}$ are direction cosines of any two lines making an angle θ. then value of $\cos \theta$ is given by .. A) $l_{1} l_{2}+m_{1} m_{2}$ B) $l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}$ C) 1 D$) 0$	B
10	True or false .General Equation of a Plane is $a x+b y+c z+$ $d=0$, where $\mathrm{a}, \mathrm{b} \mathrm{c}$ are the direction ratios of the normal to the plane A)True B)False	A

11	True or false .General Equation of a Plane is $a x^{2}+b y+c z+$ $d=0$, where a, b c are the direction ratios of the normal to the plane A)True B)False	B
12	True or false. In Intercept Form of Plane is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the intercepts made with X, Y and Z -axis respectively. A)True B)False	A
13	True or false. In Intercept Form of Plane is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the intercepts made with X, Y and Z -axis respectively. A)True B)False	B
14	True or false. In Normal Form of Plane $\boldsymbol{l} \boldsymbol{x}+\boldsymbol{m} \boldsymbol{y}+\boldsymbol{n z}=$ \boldsymbol{p} where $1, \mathrm{~m}, \mathrm{n}$ are the direction cosines of the normal to the plane and p perpendicular from the origin to the plane. A)True B)False	A
15	True or false. In Normal Form of Plane $\boldsymbol{l x}+\boldsymbol{m} \boldsymbol{y}+\boldsymbol{n z}=$ \boldsymbol{p} where $\mathrm{l}, \mathrm{m}, \mathrm{n}$ are not the direction cosines of the normal to the plane and p perpendicular from the origin to the plane. A)True B)False	B
16	True or false. Equation of the plane through the point $\left(x_{1}, y_{1}, z_{l}\right)$ is given by $a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$ where $\mathrm{a}, \mathrm{b} \mathrm{c}$ are the direction ratios of the normal to the plane. A)True B)False	A
17	True or false. Equation of the plane through the point $\left(x_{1}, y_{1}, z_{1}\right)$ is given by $a\left(x-x_{1}\right)^{2}+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0 \quad$ where $\mathrm{a}, \mathrm{b} \mathrm{c}$ are the direction ratios of the normal to the plane. A)True B)False	B
18	True or false. Equation of the plane through the point $\left(x_{1}, y_{1}, z_{1}\right)$ is given by $a\left(x-x_{1}\right)^{2}+b\left(y-y_{1}\right)^{2}+c\left(z-z_{1}\right)=$ $0 \quad$ where $\mathrm{a}, \mathrm{b} \mathrm{c}$ are the direction ratios of the normal to the plane. A)True B)False	B
19	True or false. The length of perpendicular p from the point $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ to the plane $a x+b y+c z+d=0$ is given by $p=\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a^{2}+b^{2}+c^{2}}} .$	A

	A)True B)False	
20	True or false. The length of perpendicular p from the point $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ to the plane $a x+b y+c z+d=0$ is given by $p=$ $\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a+b+c}}$. A)True B)False	B
21	True or false. The length of perpendicular p from the point $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ to the plane $a x+b y+c z+d=0$ is given by $p=$ $\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a+b+c-d}}$. A)True B)False	B
22	True or false. The length of perpendicular p from the point $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ to the plane $a x+b y+c z+d=0$ is given by $p=$ $\frac{a x_{1}+b y_{1}+c z_{1}}{\sqrt{a^{2}+b^{2}+c^{2}}}$. A)True B)False	B
23	True or false. .In Two Point Form, Equation of a straight line passing through $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(x_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is given by $\frac{x-x_{1}}{x_{1}-x_{2}}=$ $\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$ A)True B)False	B
24	True or false. .In Two Point Form, Equation of a straight line passing through $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(x_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is given by $\frac{x-x_{1}}{x_{2}-x_{1}}=$ $\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$ A)True B)False	A
25	True or false. .In Two Point Form, Equation of a straight line passing through $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(x_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is given by $\frac{x-x_{1}}{x_{2}-x_{1}}=$ $\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{1}-z_{2}}$ A)True B)False	B
26	True or false. .In Two Point Form, Equation of a straight line passing through $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(x_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is given by $\frac{x-x_{1}}{x_{1}-x_{2}}=$ $\frac{y-y_{1}}{y_{1}-y_{2}}=\frac{z-z_{1}}{z_{1}-z_{2}}$ A)True B)False	A
27	True or false. .In Two Point Form, Equation of a straight line passing through $\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(x_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is given by $\frac{x-x_{1}}{x_{2}-x_{1}}=$ $\frac{y-y_{1}}{y_{1}-y_{2}}=\frac{z-z_{1}}{z_{1}-z_{2}}$ A)True B)False	B

28	True or false. .In One Point Form, Equation of a straight line $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the direction ratios of the line. A)True B)False	\mathbf{A}
29	True or false. \quad.In One Point Form, Equation of a straight line $\frac{x-x_{1}}{a}=\frac{y_{1}-y}{b}=\frac{z-z_{1}}{c}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the direction ratios of the line. A)True B)False	B
30	True or false. and Radius "r" is given by $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=$ r^{2}.	A
A)True B)False		

