	Multiple Choice Question Bank	
	Subject: Calculus	ANS
1	Evaluate: $\lim_{x \to 1} \frac{x^2 - 1}{x^2 + 3x - 4}$	
	A. 1/5 B. 2/5 C. 3/5 D. 4/5	В
2	Evaluate: $\lim_{x \to 4} \frac{x-4}{x^2 - x - 12}$	
	A. undefined B. 0	
	D. 1/7	D
3	Evaluate: $\lim_{x \to 4} \frac{x^2 - 16}{x - 4}$	С
	A. 0	
	B. 1	
	C. 8	
	D. 16	
4	Evaluate: $M = \lim_{x \to 2} \frac{x^2 - 4}{x - 2}$	
	A. 0	
	B. 2	
	C. 4	
	D. 6	
5	If r and g are two functions such that $\lim_{x \to \infty} f(x) = x + \inf (x) + \inf (x) = x + \inf (x) + i = x + x + i = x + x + x + i = x +$	U
	then $\lim_{x \to a} f(x) - g(x) = 1$ infinitely and $\lim_{x \to a} g(x) = 0$ infinitely	
	A. Zero	
	B. Infinity	
	C. One	
	D. Not defined	
6	If lim $f(x)$ and lim $g(x)$ exist as x approaches a then lim $[f(x) / g(x)] = \lim_{x \to 0} f(x) / \lim_{x \to 0} f$	С
	g(x) as x approaches a.	
	A. Thue B. False	
	C. Only if $\lim_{x \to \infty} g(x)$ is not equal to 0	
	D. Only if $\lim_{x \to \infty} f(x)$ is not equal to 0.	
7	For any polynomial function p(x), lim p(x) as x approaches a is equal to	Α
	A. p(a)	

	B. 1	
	C. 0	
	D. Not defined	
8	Evaluate: $\lim_{x \to \infty} \frac{1 - \cos x}{1 - \cos x}$	В
	Evaluate: $\lim_{x \to 0} \frac{x^2}{x^2}$	
	B. 1/2	
	D1/2	
9	If $\lim_{x \to \infty} f(x) = 11$ as x approaches a from the left and $\lim_{x \to \infty} f(x) = 12$ as x approaches a	Δ
9	from the right $\lim_{x \to \infty} f(x) = x$ approaches a non-the left and $\lim_{x \to \infty} f(x) = 12$ as x approaches a from the right $\lim_{x \to \infty} f(x) = x$	~
	Δ True	
	B Falso	
	Γ	
	D Invalid	
10	The two functions f and g defined by $f(x) = 3x + 3$ for x real and $g(t) = 3t + 3$ for t	B
10	real and nositive	
	A Are equal	
	B. Two functions are equal if their rules are equal and their domains are the	
	same.	
	C. Two functions are equal if their rules are equal and their domains are the	
	diferent.	
	D. None of these	
11	If functions f and g have domains Df and Dg respectively, then the domain of f / g	С
	is given by	
	A. the union of Df and Dg	
	B. the intersection of Df and Dg	
	C. the intersection of Df and Dg without the zeros of function g	
	D. None of the above	
12	Evaluate: $\lim x^2 + 3x - 4$	Α
	Evaluate. IIII $x + 5x - 4$	
	A. 24	
	B. 26	
	C. 28	
	D. 30	
13	If f is a function such that $\lim f(x)$ as x> a does not exist then f is	В
	A. Continuous	
	B. Not Continuous	
	C. Neither A nor B	
	D. Both A and B	
14	If functions f(x) and g(x) are continuous everywhere then	В
	A. (f / g)(x) is also continuous everywhere.	
	B. $(f / g)(x)$ is also continuous everywhere except at the zeros of $g(x)$.	

	C. more information is needed to answer this guestion	
	D. None of these	
15	If functions f(x) and g(x) are continuous everywhere and f(1) = 2, f(3) = -4, f(4) =	Α
	8, $g(0) = 4$, $g(3) = -6$ and $g(7) = 0$ then lim $(f + g)(x)$ as x approaches 3 is equal to	
	A10	
	B11	
	C15	
	D. cannot find a value for the above limit since only values of the functions are	
	given.	
16	$\lim \frac{\sqrt{f(x)} - 3}{x}$	C
	$x \rightarrow 9$ $\sqrt{x} - 3$	
	If f (9) = 9, f (9) = 4, then equals	
	C. 4 D. None of these	
	D. None of these	
17	If f(x) is continuous everywhere	Δ
- /	A Then $ f(x) $ is continuous everywhere	
	B Then $ f(x) $ is discontinous everywhere	
	$C_{\rm c}$ Then $ f(x) $ is discontinuous core ywhere.	
	D. None of these	
18	If f(x) is continuous everywhere, then square root [f(x)] is continuous	В
	everywhere.	
	A. The statement is true.	
	B. The statement is false.	
	C. Can't say	
	D. None of these	
19	If the composition f o g is not continuous at $x = a$, this implies	Α
	A. then either g is not continuous at $x = a$ or f is not continuous at g(a).	
	B. then either g is continuous at $x = a$ or f is not continuous at $g(a)$.	
	C. then either g is not continuous at $x = a$ or f is continuous at g(a).	
	D. then either g is continuous at $x = a$ or f is continuous at g(a).	
20	$x^{2}-1$	Α
	Evaluate the following limit: $\lim_{x \to 1} \frac{x}{x^2 + 3x - 4}$	
	A 2/5	
	B infinity	
	D. 5/2	
21	The interval in which the Lagrange's theorem is applicable for the function f(x) =	С
	1/x is	
	<u>A.</u> [-3, 3]	
	<u>B.[</u> -2, 2]	
	<u>C.[</u> 2, 3]	
	<u>D.[</u> -1, 1]	
22	If $f(x) = x $, then for interval [-1, 1], $f(x)$	С

	A. satisfied all the conditions of Rolle's Theorem	
	B. satisfied all the conditions of Mean Value Theorem	
	C. does not satisfied the -conditions of Mean Value Theorem	
	D. None of these	
23	What is the derivative of $f(x) = x $ at $x = 0$	Α
	A. Does not exist	
	B. 1	
	C1	
	D. 0	
24	sin ² x	Α
	$\lim_{x \to 0} \frac{1}{x}$ is equal to	
	<u>B.</u> ∞	
	<u>C.</u> 1	
	<u>D.</u> -1	
25	Limit of the following series as x approaches $\pi/2$ is	D
	$f(x) = x - \frac{x^3}{21} + \frac{x^5}{21} - \frac{x^7}{21}$	
	$\frac{A.2U/3}{P=/2}$	
	$\frac{B}{C} = \frac{1}{2}$	
	\underline{C}	
- 26	<u>U.</u> 1 Examples of function f(x) in 2	
26	Expansion of function $f(x)$ is?	A
	$\begin{array}{c} A. I(0) + \frac{1}{2} I(0) + \frac{1}{2} I(0) \\ B + \frac{1}{2} I(0) + \frac{1}{2} I(0) \\ + \frac{1}{2} $	
	$\begin{array}{l} A. f(0) \neq y_{11} f(0) \neq y_{21} f(0) \dots + y_{n1} f^n(0) \\ B. 1 + y_{11} f(0) + y_{21} f^n(0) \dots + y_{n1} f^n(0) \\ C. f(0) = y_{n1} f^n(0) + y_{n2} f^n(0) \dots + (-1) n y_{n1} f^n(0) \end{array}$	
	$\begin{array}{l} A. f(0) \neq y_{11} f'(0) \neq y_{21} f'(0) \dots + y_{n1} f''(0) \\ B. f(0) = y_{11} f'(0) + y_{21} f''(0) \dots + y_{n1} f''(0) \\ C. f(0) = y_{11} f'(0) + y_{21} f''(0) \dots + (-1)^{n} y_{n1} f''(0) \\ D. f(1) + y_{11} f'(1) + y_{21} f''(1) \dots + y_{n1} f''(1) \end{array}$	
27	B. $1 + y'_{11} f'(0) + y'_{21} f''(0) \dots + y'_{n1} f^{n}(0)$ C. $f(0) - y'_{11} f'(0) + y'_{21} f''(0) \dots + (-1)^{n} y'_{n1} f^{n}(0)$ D. $f(1) + y'_{11} f'(1) + y'_{21} f''(1) \dots + y'_{n1} f^{n}(1)$ The necessary condition for the maclaurin expansion to be true for function	D
27	B. $1 + \frac{1}{2} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{1} + \frac{1}{1}$	D
27	B. $1 + \frac{1}{2} + \frac{1}{2}$	D
27	B. $1 + \frac{1}{2} + \frac{1}{2}$	D
27	B. $1 + \frac{1}{2} f(0) + \frac{1}{2} f(0) + \frac{1}{2} f(0) + \frac{1}{2} f(0)$ B. $1 + \frac{1}{2} f(0) + \frac{1}{2} f(0) + \frac{1}{2} f(0) + \frac{1}{2} f(0)$ C. $f(0) - \frac{1}{2} f(0) + \frac{1}{2} f(0) + \frac{1}{2} f(0) + \frac{1}{2} f(0) + \frac{1}{2} f(0)$ D. $f(1) + \frac{1}{2} f(1) + \frac{1}{2} f(1) + \frac{1}{2} f(1) + \frac{1}{2} f(1) + \frac{1}{2} f(1)$ The necessary condition for the maclaurin expansion to be true for function $f(x)$ is A. $f(x)$ should be continuous B. $f(x)$ should be differentiable C. $f(x)$ should exists at every point	D
27	B. $1 + \frac{1}{2} + \frac{1}{2}$	D
27	B. $1 + \frac{1}{2} + \frac{1}{2}$	D
27	B. $1 + \frac{1}{2} + \frac{1}{2}$	D
27	A. $f(0) \neq y_{11} f(0) + y_{21} f(0) \dots + y_{n1} f^n(0)$ B. $1 + y'_{11} f(0) + x'_{21} f(0) \dots + x'_{n1} f^n(0)$ C. $f(0) - y'_{11} f(0) + x'_{21} f(0) \dots + (-1)^n x'_{n1} f^n(0)$ D. $f(1) + y'_{11} f(1) + x'_{21} f'(1) \dots + x'_{n1} f^n(1)$ The necessary condition for the maclaurin expansion to be true for function $f(x)$ is A. $f(x)$ should be continuous B. $f(x)$ should be continuous B. $f(x)$ should be differentiable C. $f(x)$ should exists at every point D. $f(x)$ should be continuous and differentiable The expansion of $f(a+h)$ is A. $f(a)+h/1!f'(a)+h^2/2!f''(a)\dots+h^n/n!fn(a)$ B. $f(a)+h'^{1!}f'(a)+h^2/2!f''(a)\dots$	D
27	B. $1 + y'_{11} f'(0) + y'_{21} f'(0) \dots + y'_{n1} f''(0)$ B. $1 + y'_{11} f'(0) + y'_{21} f'(0) \dots + y'_{n1} f''(0)$ C. $f(0) - y'_{11} f'(0) + y'_{21} f'(0) \dots + (-1)^n y'_{n1} f''(0)$ D. $f(1) + y'_{11} f'(1) + y'_{21} f'(1) \dots + y'_{n1} f''(1)$ The necessary condition for the maclaurin expansion to be true for function $f(x)$ is A. $f(x)$ should be continuous B. $f(x)$ should be continuous B. $f(x)$ should be differentiable C. $f(x)$ should exists at every point D. $f(x)$ should be continuous and differentiable The expansion of $f(a+h)$ is A. $f(a)+h/1!f'(a)+h^2/2!f''(a)\dots+h^n/n!fn(a)$ B. $f(a)+h/1!f'(a)+h^2/2!f''(a)\dots+h^n/n!fn(a)$	D
27	B. $1 + \frac{1}{2} + \frac{1}{2}$	D A
27 28 28	B. $1 + \frac{1}{2} f(0) + \frac{1}{2} f(0)$	D
27 28 29	B. $1 + \frac{1}{2} (0) + \frac{1}{2} (0) + \frac{1}{2} (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)$	D A B
27 28 29	A. $f(0) + y_{11} + (0) + y_{21} + (0) \dots + y_{n1} + (0)$ B. $1 + y'_{11} f(0) + x'_{21} f(0) \dots + x'_{n1} f^{n}(0)$ C. $f(0) - y'_{11} f(0) + x'_{21} f(1) \dots + x'_{n1} f^{n}(0)$ D. $f(1) + y'_{11} f(1) + x'_{21} f(1) \dots + x'_{n1} f^{n}(1)$ The necessary condition for the maclaurin expansion to be true for function f(x) is	D A B
27 28 29	R. $h(0) + y_{11}h(0) + y_{21}h(0), \dots, + y_{n1}h(0)$ B. $1 + y_{11}h(0) + y_{21}h(0), \dots, + y_{n1}h(0)$ C. $f(0) - y_{11}h(0) + y_{21}h(0), \dots, + (-1)^n x_{n1}h(0)$ D. $f(1) + y_{11}h(1) + y_{21}h(1), \dots, + y_{n1}h(1)$ The necessary condition for the maclaurin expansion to be true for function $f(x)$ is	D A B
27 28 29	B. $1 + \frac{1}{2} + \frac{1}{1} + \frac{1}{2} + \frac{1}{2}$	D A B
27 28 29 30	R. $f(0) + y_{21} f'(0) + y_{22} f'(0) \dots + y_{n1} f'(0)$ B. $1 + y'_{11} f'(0) + y'_{21} f'(0) \dots + y'_{n1} f'(0)$ C. $f(0) - y'_{11} f'(0) + y'_{21} f'(0) \dots + y'_{n1} f''(0)$ D. $f(1) + y'_{11} f'(1) + y'_{21} f'(1) \dots + y'_{n1} f''(1)$ The necessary condition for the maclaurin expansion to be true for function f(x) is	D A B A
27 28 29 30	A. $f(0) + y_{11} f(0) + y_{21} f(0)$ $+ y_{n1} f^{n}(0)$ B. $1 + y'_{11} f(0) + y'_{21} f(0)$ $+ y'_{n1} f^{n}(0)$ C. $f(0) - y'_{11} f(0) + y'_{21} f(1)$ $+ y'_{n1} f^{n}(1)$ The necessary condition for the maclaurin expansion to be true for function f(x) is	D A B A

	C. ln(2)+x/2+x ³ /8-x ⁵ /192+	
	D. $\ln(2)+x/2+x^3/8+x^5/192+$	
31	Find the expansion of e ^{xSin(x)} ?	В
	A. $e^{x \sin(x)} = 1 + x^2 - x^4 / 3 + x^6 / 120$	
	B. $e^{x \sin(x)} = 1 + x^2 + x^4/3 + x^6/120 +$	
	C. $e^{x \sin(x)} = x + x^3/3 + x^5/120 +$	
	D. $e^{x \sin(x)} = x + x^3/3 - x^5/120 +$	
32	Given $f(x) = \ln(\cos(x))$.calculate the value of $\ln(\cos(\pi/2))$.	Α
	A1.741	
	B. 1.741	
	C. 1.563	
	D1.563	
33	The expansion of $f(x)$, about $x = a$ is	Α
	A. $f(a)+h/1!f'(a)+h^2/2!f''(a)+h^n/n!f^n(a)$	
	B. $f(a)+h/1!f'(a)+h^2/2!f''(a)$	
	C. $hf(a)+h^2/1!f'(a)+h^3/2!f''(a)+h^n/n!f^n(a)$	
	D. $hf(a)+h^2/1!f'(a)+h^3/2!f''(a)$	
34	Find the value of V10	В
	A. 3.1633	
	B. 3.1623	
	C. 3.1632	
	D. 3.1645	
35	Expand $f(x) = \frac{1}{x}$ about x = 1.	Α
	A. $1 - (x-1) + (x-1)^2 - (x-1)^3 + \dots$	
	B. $1 + (x-1) + (x-1)^2 + (x-1)^3 + \dots$	
	C. $1 + (x-1) - (x-1)^2 + (x-1)^3 + \dots$	
	D. $1 - (x+1) + (x+1)^2 - (x+1)^3 + \dots$	
36	Find the value of $e^{\pi}/_{4\sqrt{2}}$	Α
	a) 1.74	
	b) 1.84	
	c) 1.94	
	d) 1.64	
37	Find the value of $ln(sin(31^\circ))$ if $ln(2) = 0.69315$	В
	a) -0.653	
	b) -0.663	
	c) -0.764	
	d) -0.662	
38	The expansion of $f(x, y) = e^{x \sin(y)}$, is	D
	a) x + xy +	
	b) $y + y^2 x +$	
	c) $x + x^2 y +$	
	d) y + xy +	
39	The expansion of $f(x, y) = e^{x} \ln(1 + y)$, is	Α
	a) $f(x,y) = y + xy - \frac{y^2}{2} + \dots$	
	b) $f(x,y) = y - xy + \frac{y^2}{2} - \dots$	
	c) $f(x,y) = y + x - \frac{y^2}{2} + \dots$	
	d) $f(x,y) = x + y - \frac{x^2}{2} + \dots$	

40	Find $Itx \rightarrow 0(3e^{x}-2e^{2x}-e^{3x})/(e^{x}+e^{2x}-2e^{3x})$	С
	a) ³ / ₂	
	b) 0	
	c) ⁴ / ₃	
	d) $-\frac{4}{3}$	
41	Find relation between a and b such that the following limit is got after a single	D
	application of L hospitals Rule $ltx \rightarrow 0$ (ae ^x +be ^{2x})/(be ^x +ae ^{2x})	
	a) $b/a = 2$	
	b) $a/b = 2$	
	c) a = b	
	d) a = -b	
42	Find $ltx \rightarrow 0$ (2cos(2x)+3cos(5x)-5cos(19x))/(cos(4x)-cos(3x))	Α
	a) -76	
	b) -6	
	c) -7	
	d) 0	
43	Find = $Itx \rightarrow 0 sin(x)/tan(x)$	В
	a) 0	
	b) 1	
	c) ∞	
	d) 2	
44	Find $Itx \rightarrow 0 \sin(x^2)/x$	С
	a) ∞	
	b) -1	
	c) 0	
	d) 2 ²	
45	L'Hospital Rule states that	Α
	a) If $\lim x \to a f(x)/g(x)$ is an indeterminate form than $\lim x \to a$	
	$f(x)/g(x)=\lim x \rightarrow af'(x)/g'(x)$ if $\lim x \rightarrow a f'(x)/g'(x)$ has a finite value	
	b) $\lim x \rightarrow a f(x)/g(x)$ always equals to $\lim x \rightarrow a f'(x)/g'(x)$	
	c) $\lim x \rightarrow a f(x)/g(x)$ if an indeterminate form than cannot be solved	
	d) $\lim x \rightarrow a f(x)/g(x)$ if an indeterminate form than it is equals to zero.	
46	If $f(x) = x^2 - 3x + 2$ and $g(x) = x^3 - x^2 + x - 1$ than find value of $\lim x \rightarrow 1 f(x)/g(x)$?	С
	a) 0.5	
	b) 1	
	c) -0.5	
	d) -1	
47	If $f(x) = Tan(x)$ and $g(x) = e^{x} - 1$ than find value of $\lim_{x \to 0} \frac{f(x)}{g(x)}$	Α
	a) 1	
	b) 0	
	c) -1	
	d) 2	
48	If $f(x) = sin(x)cos(x)$ and $g(x) = x^2$ than find value of $\lim_{x \to 0} \frac{f(x)}{g(x)}$	В
	a) 2	
	b) 0	
	c) -1	
	d) Cannot be found	

49	If $f(x) = Sin(x)$ and $g(x) = x$ than find value of $\lim_{x \to 0} \frac{f(x)}{g(x)}$	С
	a) -1	
	b) 0	
	c) 1	
	d) 2	
50	If $f(x) = e^x + x\cos(x)$ and $g(x) = \sin(x)$ than find value of $\lim_{x \to 0} \frac{f(x)}{g(x)}$	Α
	a) 2	
	b) 1	
	c) 3	
	d) 4	