	Multiple Choice Question Bank MATHEMATICS: MTH-112 Subject: Calculus	ANS
1	Evaluate: $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}+3 x-4}$ A. $1 / 5$ B. $2 / 5$ C. $3 / 5$ D. $4 / 5$	B
2	Evaluate: $\lim _{x \rightarrow 4} \frac{x-4}{x^{2}-x-12}$ A. undefined B. 0 C. Infinity D. $1 / 7$	D
3	Evaluate: $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}$ A. 0 B. 1 C. 8 D. 16	C
4	Evaluate: $M=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$ A. 0 B. 2 C. 4 D. 6	C
5	If f and g are two functions such that $\lim f(x)$ as x--> $a=+$ infinity and $\lim g(x)$ as x--> $a=+$ infinity then $\lim [f(x)-g(x)]$ as $x-->a$ A. Zero B. Infinity C. One D. Not defined	D
6	If $\lim f(x)$ and $\lim g(x)$ exist as x approaches a then $\lim [f(x) / g(x)]=\lim f(x) / \lim$ $\mathrm{g}(\mathrm{x})$ as x approaches a. A. True B. False C. Only if $\lim \mathrm{g}(\mathrm{x})$ is not equal to 0 D. Only if $\lim f(x)$ is not equal to 0 .	C
7	For any polynomial function $p(x)$, $\lim p(x)$ as x approaches a is equal to A. $\mathrm{p}(\mathrm{a})$	A

	B. 1 C. 0 D. Not defined	
8	Evaluate: $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$ A. 0 B. $1 / 2$ C. 2 D. $-1 / 2$	B
9	If $\lim f(x)=L 1$ as x approaches a from the left and $\lim f(x)=L 2$ as x approaches a from the right. $\lim f(x)$ as x approaches a exists only if $L 1=L 2$. A. True B. False C. Can't say D. Invalid	A
10	The two functions f and g defined by $f(x)=3 x+3$ for x real and $g(t)=3 t+3$ for t real and positive.... A. Are equal B. Two functions are equal if their rules are equal and their domains are the same. C. Two functions are equal if their rules are equal and their domains are the diferent. D. None of these	B
11	If functions f and g have domains $D f$ and $D g$ respectively, then the domain of f / g is given by A. the union of Df and Dg B. the intersection of Df and Dg C. the intersection of Df and Dg without the zeros of function g D. None of the above	C
12	Evaluate: $\lim _{x \rightarrow 4} x^{2}+3 x-4$ A. 24 B. 26 C. 28 D. 30	A
13	If f is a function such that $\lim f(x)$ as x--> a does not exist then f is A. Continuous B. Not Continuous C. Neither A nor B D. Both A and B	B
14	If functions $f(x)$ and $g(x)$ are continuous everywhere then A. $(f / g)(x)$ is also continuous everywhere. B. $(\mathrm{f} / \mathrm{g})(\mathrm{x})$ is also continuous everywhere except at the zeros of $\mathrm{g}(\mathrm{x})$.	B

	C. more information is needed to answer this question D. None of these	
15	If functions $f(x)$ and $g(x)$ are continuous everywhere and $f(1)=2, f(3)=-4, f(4)=$ $8, g(0)=4, g(3)=-6$ and $g(7)=0$ then $\lim (f+g)(x)$ as x approaches 3 is equal to A. -10 B. -11 C. -15 D. cannot find a value for the above limit since only values of the functions are given.	A
16	$\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}$ If $f(9)=9, f^{\prime}(9)=4$, then equals A. 0 B. 9 C. 4 D. None of these	C
17	If $f(x)$ is continuous everywhere, A. Then $\|f(x)\|$ is continous everywhere. B. Then $\|f(x)\|$ is discontinous everywhere. C. Then $\|f(x)\|$ is discontinous somewhere. D. None of these	A
18	If $f(x)$ is continuous everywhere, then square $\operatorname{root}[f(x)]$ is continuous everywhere. A. The statement is true. B. The statement is false. C. Can't say D. None of these	B
19	If the composition fog is not continuous at $\mathrm{x}=\mathrm{a}$, this implies A. then either g is not continuous at $\mathrm{x}=\mathrm{a}$ or f is not continuous at $\mathrm{g}(\mathrm{a})$. B. then either g is continuous at $\mathrm{x}=\mathrm{a}$ or f is not continuous at $\mathrm{g}(\mathrm{a})$. C. then either g is not continuous at $\mathrm{x}=\mathrm{a}$ or f is continuous at $\mathrm{g}(\mathrm{a})$. D. then either g is continuous at $x=a$ or f is continuous at $g(a)$.	A
20	Evaluate the following limit: $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}+3 x-4}$ A. $2 / 5$ B. infinity C. 0 D. $5 / 2$	A
21	The interval in which the Lagrange's theorem is applicable for the function $f(x)=$ $1 / x$ is A. $[-3,3]$ B. $[-2,2]$ C. $[2,3]$ D. $[-1,1]$	C
22	If $f(x)=\|x\|$, then for interval $[-1,1], f(x)$	C

	A. satisfied all the conditions of Rolle's Theorem B. satisfied all the conditions of Mean Value Theorem C. does not satisfied the -conditions of Mean Value Theorem D. None of these	
23	What is the derivative of $f(x)=\|x\|$ at $x=0$ A. Does not exist B. 1 C. -1 D. 0	A
24	$\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x}$ is equal to A. 0 B. ∞ C. 1 D. -1	A
25	Limit of the following series as x approaches $\pi / 2$ is $f(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}$ A. $2 \pi / 3$ B. $\pi / 2$ C. $\pi / 3$ D. 1	D
26	Expansion of function $f(x)$ is? A. $f(0)+y_{11} f(0)+x / 2!f^{\prime}(0) \ldots \ldots+x /{ }^{n}!f_{n}(0)$ B. $1+x / 1!f^{\prime}(0)+x / 2!f^{\prime}(0) \ldots \ldots+x /{ }^{n}!f_{n}(0)$ C. $f(0)-x / 11 f^{\prime}(0)+x / 2, f^{\prime}(0) \ldots \ldots+(-1)^{\wedge} n \times 1 / n!f_{n}(0)$ D. $f(1)+y_{11} f^{\prime}(1)+x / 2!f^{\prime \prime}(1) \ldots \ldots .+\times /{ }_{n!} f_{n}(1)$	A
27	The necessary condition for the maclaurin expansion to be true for function $f(x)$ is \qquad A. $f(x)$ should be continuous B. $f(x)$ should be differentiable C. $f(x)$ should exists at every point D. $f(x)$ should be continuous and differentiable	D
28	The expansion of $f(a+h)$ is \qquad A. $f(a)+h / 1!f^{\prime}(a)+h^{2} / 2!f^{\prime \prime}(a) \ldots . . .+h^{n} / n!f_{n}(a)$ B. $f(a)+h / 1!f^{\prime}(a)+h^{2} / 2!!^{\prime \prime}(a) \ldots \ldots$. C. $\operatorname{hf}(a)+h^{2} / 1!f^{\prime}(a)+h^{3} / 2!f^{\prime \prime}(a) \ldots \ldots .+h^{n} / n!f_{n}(a)$ D. $h f(a)+h^{2} / 1!f^{\prime}(a)+h^{3} / 2!f^{\prime \prime}(a) \ldots$.	A
29	The expansion of $e^{\sin (x)}$ is? A. $1+x+x / 2+x / 8+\ldots$. B. $1+x+x / 2 / 2 x / 8+\ldots$ C. $1+x-x / 2 / 2+x / 8+\ldots$ D. $1+x+x / 6-x / 10+\ldots$	B
30	$\mathrm{f}(\mathrm{x})=\ln \left(1+\mathrm{e}^{\mathrm{x}}\right)$? A. $\ln (2)+x / 2+x^{2} / 8-x^{4} / 192+$. B. $\ln (2)+x / 2+x^{2} / 8+x^{4} / 192+\ldots$.	A

	C. $\ln (2)+x / 2+x^{3} / 8-x^{5} / 192+\ldots$. D. $\ln (2)+x / 2+x^{3} / 8+x^{5} / 192+$	
31	Find the expansion of $\mathrm{e}^{x \sin (x)}$? A. $e^{x \operatorname{Sin}(x)}=1+x^{2}-x^{4} / 3+x^{6} / 120-\ldots$ B. $e^{x \sin (x)}=1+x^{2}+x^{4} / 3+x^{6} / 120+\ldots$ C. $e^{x \sin (x)}=x+x^{3} / 3+x^{5} / 120+$.. D. $e^{x \sin (x)}=x+x^{3} / 3-x^{5} / 120+\ldots$	B
32	Given $f(x)=\ln (\cos (x))$, calculate the value of $\ln (\cos (\pi / 2))$. A. -1.741 B. 1.741 C. 1.563 D. -1.563	A
33	The expansion of $f(x)$, about $x=a$ is A. $f(a)+h / 1!f^{\prime}(a)+h^{2} / 2!f^{\prime \prime}(a) \ldots . . h^{n} / n!f^{n}(a)$ B. $f(a)+h / 1!f^{\prime}(a)+h^{2} / 2!f^{\prime \prime}(a) \ldots$. C. $h f(a)+h^{2} / 1!f^{\prime}(a)+h^{3} / 2!!^{\prime \prime}(a) \ldots+h^{n} / n!f^{n}(a)$ D. $h f(a)+h^{2} / 1!f^{\prime}(a)+h^{3} / 2!f^{\prime \prime}(a) . . .$.	A
34	Find the value of V 10 A. 3.1633 B. 3.1623 C. 3.1632 D. 3.1645	B
35	Expand $f(x)=1 / x$ about $x=1$. A. $1-(x-1)+(x-1)^{2}-(x-1)^{3}+\ldots$. B. $1+(x-1)+(x-1)^{2}+(x-1)^{3}+\ldots$. C. $1+(x-1)-(x-1)^{2}+(x-1)^{3}+\ldots$. D. $1-(x+1)+(x+1)^{2}-(x+1)^{3}+\ldots$.	A
36	Find the value of $e^{\pi / 4 \sqrt{2}}$ a) 1.74 b) 1.84 c) 1.94 d) 1.64	A
37	Find the value of $\ln \left(\sin \left(31^{\circ}\right)\right)$ if $\ln (2)=0.69315$ a) -0.653 b) -0.663 c) -0.764 d) -0.662	B
38	The expansion of $f(x, y)=e^{x \operatorname{Sin}(y)}$, is a) $x+x y+\ldots$. b) $y+y^{2} x+\ldots$. c) $x+x^{2} y+\ldots$. d) $y+x y+\ldots . . .$.	D
39	The expansion of $f(x, y)=e^{x} \ln (1+y)$, is a) $f(x, y)=y+x y-y 2 / 2+\ldots \ldots$. b) $f(x, y)=y-x y+y^{2} / 2-\ldots \ldots$. c) $f(x, y)=y+x-y 2 / 2+\ldots \ldots .$. d) $f(x, y)=x+y-x 2 / 2+\ldots \ldots .$.	A

40	Find Itx $\rightarrow 0\left(3 e^{x}-2 e^{2 x}-e^{3 x}\right) /\left(e^{x}+e^{2 x}-2 e^{3 x}\right)$ a) $3 / 2$ b) 0 c) $4 / 3$ d) $-4 / 3$	C
41	Find relation between a and b such that the following limit is got after a single application of L hospitals Rule $\operatorname{ltx} \rightarrow 0\left(a e^{x}+b e^{2 x}\right) /\left(b e^{x}+a e^{2 x}\right)$ a) $b / a=2$ b) $a / b=2$ c) $a=b$ d) $a=-b$	D
42	Find $\operatorname{Itx} \rightarrow 0(2 \cos (2 x)+3 \cos (5 x)-5 \cos (19 x)) /(\cos (4 x)-\cos (3 x))$ a) -76 b) -6 c) -7 d) 0	A
43	Find $=\operatorname{lt} x \rightarrow 0 \sin (x) / \tan (x)$ a) 0 b) 1 c) ∞ d) 2	B
44	Find $\operatorname{Itx} \rightarrow 0 \sin \left(x^{2}\right) / x$ a) ∞ b) -1 c) 0 d) 2^{2}	C
45	L'Hospital Rule states that a) If $\lim x \rightarrow a f(x) / g(x)$ is an indeterminate form than $\lim x \rightarrow a$ $f(x) / g(x)=\lim x \rightarrow a f^{\prime}(x) / g^{\prime}(x)$ if $\lim x \rightarrow a f^{\prime}(x) / g^{\prime}(x)$ has a finite value b) $\lim x \rightarrow a f(x) / g(x)$ always equals to $\lim x \rightarrow a f^{\prime}(x) / g^{\prime}(x)$ c) $\lim x \rightarrow a f(x) / g(x)$ if an indeterminate form than cannot be solved d) $\lim x \rightarrow a \mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})$ if an indeterminate form than it is equals to zero.	A
46	If $f(x)=x^{2}-3 x+2$ and $g(x)=x^{3}-x^{2}+x-1$ than find value of $\lim x \rightarrow 1 f(x) / g(x)$? a) 0.5 b) 1 c) -0.5 d) -1	C
47	If $f(x)=\operatorname{Tan}(x)$ and $g(x)=e^{x}-1$ than find value of $\lim _{x \rightarrow 0} f(x) / g(x)$ a) 1 b) 0 c) -1 d) 2	A
48	If $f(x)=\sin (x) \cos (x)$ and $g(x)=x^{2}$ than find value of $\lim _{x \rightarrow 0} f(x) / g(x)$ a) 2 b) 0 c) -1 d) Cannot be found	B

49	If $f(x)=\operatorname{Sin}(x)$ and $g(x)=x$ than find value of $\lim _{x \rightarrow 0^{f(x)} / g(x)}$	C) -1
b) 0		
	c) 1	
d) 2	C	
50	If $f(x)=e^{x}+x \cos (x)$ and $g(x)=\operatorname{Sin}(x)$ than find value of $\lim _{x \rightarrow 0} 0^{f(x)} / g(x)$	
	a) 2 b) 1 c) 3 d) 4	

