Q.N.	TYBSc(Mathematics) Subject : MTH 503: Algebra	Ans
	Question Bank	
1)	A subgroup H of a group G is called a normal subgroup of G if	(B)
	a) $Ha = Ha^{-1}$, $\forall a \in G$ b) $Ha = aH$, $\forall a \in G$ c) $Ha = a^{-1}H$, for some $a \in G$ d) $Ha = aH^{-1}$, $\forall a \in G$	
2)	Read the following statement and choose the correct option. Statement: The kernel of a group homomorphism is always a normal subgroup. This statement is (A) True (B) False	(A)
3)	(C) Not relevant (D) None of these A normal subgroup is also called (A) invariant subgroup (B) self-conjugate subgroup (C) both (A) and (B) (D) none of these	(C)
(4)	A group $G \neq \{e\}$ is called a if the only normal subgroups of G are $\{e\}$ and G . (A) simple group (B) finite group (C) infinite group (D) quotient group	(A)
(5)	 Let G be a group. The subgroup of G whose members are finite products of elements of the form aba⁻¹ b⁻¹, a ∈ G and b ∈ G is called the (A) Commutative subgroup (B) Commutator subgroup (C) Non Commutator Subgroup (D) None of these 	(B)
(6)	A group <i>G</i> is an abelian group if and only if the commutator subgroup of <i>G</i> is the (A) Trivial group (B) Non-trivial group (C) Both (A) and (B) (D) None of these	(A)
(7)	Read the following statement and choose the correct option. Statement: The commutator subgroup of a group is a normal subgroup. This statement is (A) True (B) False (C) Irrelevant (D) None of these	(A)
(8)	Read the following statement and choose the correct option. Statement: The commutator subgroup of a group is not a normal subgroup. This statement is (A) True (B) False (C) Irrelevant (D) None of these	(B)
(9)	Let G be a group and G' the commutator subgroup of G . Then G/G' is (A) Abelian group (B) Non abelian group	(A)

	(O) N ((D) N (II	
	(C) Not a quotient group (D) None of these	
(10)	Let H be a subgroup of a group G and $a \in G$. Then, the right	(D)
` '	coset of H in a group G is given by	
	$(A)aH = \{ha/h \in H\} (B)Ha = ah/h \in H$	
	$(C)Ha = \{he/h \in H, e \in G\} \qquad (D)Ha = \{ha/h \in H\}$	
(11)	Let $G = \mathbb{Z}$ (group) and its subgroup $H = 3$. Then the quotient	(A)
(/	group G/H is	
	$(A) \mathbb{Z}_3 (B) \mathbb{Z}$	
	(C) $3\mathbb{Z}$ (D) Not exist	
(12)	Consider the group Z_{12} with addition modulo \bigoplus_{12} and let H	(C)
(12)	$=\{0,3,6,9\}$. Then H is a subgroup of G and the elements of left	(0)
	coset 8+ H are	
	(A) {0,3,6,9} (B) {0,1,2,3,4,5,6,7,8,9,10,11}	
(40)	(C) $\{2,5,8,11\}$ (D) $\{8,11,14,17,0\}$ a*H=H*a relation holds if H is	(D)
(13)	(A) a semigroup of an abelian group (B) a cyclic group	(D)
	(C) a monoid of a group (D) a subgroup of an abelian group	
(14)	If G is a finite group and N is a normal subgroup of G then	(A)
	$0(G/N) = \dots$	
	$(A)\frac{o(G)}{o(N)}$ $(B)\frac{o(N)}{o(G)}$	
	$(C)_{o(H)}^{o(G)}$ (D)does not exist	
(15)	Read the following statements and choose the correct option.	
(10)	Statement I: If G is an abelian group then so would be any of	
	its quotient group is an abelian group.	(C)
	Statement II: We can have an abelian quotient group, without	
	the 'parent' group being an abelian.	
	(A) Only statement I is true (B) Only statement II is true	
	(C) Both (A) and (B) are true (D) None of these	
(16)	Let G and G' be isomorphic. If G is an abelian group, so G' is	(B)
(10)	(A) non-abelian group (B) an abelian group	(-)
	(C) finite group (D) none of these	
(17)	Let $\theta: G \rightarrow G'$ be an isomorphism of G onto G' . Let e and e' be	(A)
(17)	the unit elements of G and G' respectively. Then	()
	$(A) \theta(e) = e'(B) \theta(e) = e$	
	$(C) \theta(e) = 0 (D) \theta(0) = e'$	
(18)	Let $\theta: G \to G'$ be an isomorphism of G onto G' . Let e and e' be	(D)
(10)	the unit elements of G and G' respectively. Then for any $a \in G'$	(0)
	G,	
	(A) $\theta(a^{-1}) = e$ (B) $\theta(a^{-1}) = e'$	
	$(C) \theta(a^{-1}) = a (D) \theta(a^{-1}) = [\theta(a)]^{-1}$	
(40)	Let $\theta: G \to G'$ be a homomorphism of G onto G' and let K	(4)
(19)	·	(A)
	$= \ker \theta$. Then K is a normal subgroup of G and $G/K = \dots$	
	(A) G'(B) G	
	(C) K (D) None of these	

(20)	Any infinite cyclic group is isomorphic to	(A)
	$(A) Z (B) Z_n$	
	$(C)^{Z}/_{n} (D)^{Z}/_{nZ}$	
(21)	If $f:G \to G$ be an onto homomorphism with $K = Kerf$, then	(B)
	$(A)_{K}^{G} \cong G(B)_{K}^{G} \cong G'$	
	$(C)\frac{G}{K} \neq G'$ (D) none of these	
(22)	Let S be a non-empty set. Any, mapping $f: S \rightarrow S$ is	(A)
	called a permutation. (A) one-one, onto (B) many-one, onto	
	(C) one-one, into (D) many-one, into	
(23)	Anof G onto itself is called anof G , where G is a	(C)
(==)	group.	
	(A) automorphism, isomorphism (B) homomorphism,	
	automorphism (C) isomorphism, automorphism (D) none of thes	
(24)	Any finite cyclic group of order n is isomorphic to	(B)
(= -/	$(A) Z(B) Z_n$	
	(C) Z/n (D) none of these	
(25)	Permutation is amapping.	(C)
	(A) injective (B) surjective (C) bijective (D) only injective	
(26)	A cycle of length two is called	(B)
(,	(A) identity permutation (B) transposition	
(07)	(C) orbit (D) odd permutation In the following permutation on 4-symbols, what is the value of	(4)
(27)	$\sigma(3)$?	(A)
	$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$	
	(A) 4 (B) 1	
	(C) 2 (D) 3	
(28)	Statement: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 1 \end{pmatrix}$ is a permutation.	
	This statement is	
	(A) True (B) False	
	(C) Can't say (D) None of these	(B)
(00)	The elements of a symmetric group S_3 can be interpreted as	(B)
(29)	symmetries of a	(C)
	(A) square (B) tetrahedron	
	(C) Triangle (equilateral) (D) None of these	
(30)	The elements of a symmetric group S_4 can be interpreted as symmetries of a	(B)
	(A) square (B) tetrahedron	
	(C) triangle (D) None of these	

(31)	The elements of a symmetric group D_4 can be interpreted as symmetries of a (A) square (B) tetrahedron (C) triangle (D) None of these	(A)
(32)	$O(S_n) = \cdots$, where S_n symmetric group of degree n . (A) $(n-1)!$ (B) $n!$ (C) $(n+1)!$ (D) $\frac{n!}{2}$	(B)
(33)	Cycle representation of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 1 & 4 \end{pmatrix} \in S_n$ is (A) (1 2 5 4) (B) (2 5 4 1) (C) (4 1 2 5) (D) All of these	(D)
(34)	Two-line notation for a cycle (1 3 5 4) in S_5 is (A) $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 1 & 4 \end{pmatrix}$ (B) $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix}$ (C) $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 3 & 1 & 4 \end{pmatrix}$ (D) $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 1 & 4 \end{pmatrix}$	(B)
(35)	$O(S_3)$, where S_3 symmetric group of degree 3. (A) 2 (B) 4 (C) 6 (D) 3	(C)
(36)	Order of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$ is (A) 3 (B) 4 (C) 5 (D) 6	(A)
(37)	(C) 5 (D) 6 Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$ be two permutations on 4 symbols, then $\sigma \tau =$ (A) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$ (B) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$ (C) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$ (D) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$	(D)
(38)	Express the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 4 & 2 & 1 & 6 & 5 & 8 & 9 & 7 \end{pmatrix}$ as a product of disjoint cycles. (A) $(1324)(56)$ (B) $(1324)(789)$ (C) $(1324)(5)(6)(789)$ (D) $(1324)(56)(789)$	(D)
(39)	The single row representation of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 5 & 6 & 1 & 4 \end{pmatrix}$ is (A) $(1235)(46)$ (B) (123456) (C) (123651) (D) $(125)(46)$	(B)
(40)	The group S_n is a finite group and is non-abelian if (A) $n \ge 2$ (B) $n > 2$ (C) $n \le 2$ (D) $n < 2$	(B)

41)	The permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 4 & 1 & 5 & 6 & 7 & 2 \end{pmatrix}$ is	(B)
	(A) an even permutation	
	(B) an odd permutation	
	(C) neither even nor odd permutation	
	(D) None of these	
42)	A permutation is calledpermutation if it can be expressed	(C)
	as a product ofnumber of transpositions.	
	(A) even, odd (B) odd, even	
43)	(C) odd, odd (D) none of these The group S_n of all permutations defined on	(A)
43)	n-symbols is called	(A)
	(A) the symmetric group	
	(B) the non-symmetric group	
	(C) transposition	
	(D) abelian group	
44)	A permutation is calledpermutation if it can be expressed	(A)
	as a product ofnumber of transpositions.	
	(A) even, even (B) even, odd	
45\	(C) odd, even (D) none of these	(0)
45)	If $S = \{1, 2, 3, 4\}$ then, in A_4 how many permutations are there?	(A)
	(A) 12 (B) 21 (C) 24 (D) 4	
46)	The alternating group is the group of allpermutations.	(A)
40)	(A) even (B) odd	(A)
	(C) both (A) and (B) (D) none of these	
47)	$O(A_4) =$, where A_4 is the subgroup of S_4 .	(B)
	(A) 21 (B) 12	
	(C) 24 (D) 6	
49)	Identity permutation is alwayspermutation.	(A)
	(A) even	
	(B) odd (C) neither even nor odd permutation	
	(D) none of these	
50)	The inverse of an odd permutation is permutation.	(C)
,	(A) even	
	(B) neither even nor odd permutation	
	(C) odd	
	(D) none of these	
51)	The value of $\sigma(4)$ if $\sigma = (1 \ 4 \ 3 \ 2)$	(D)
	(A) 1 (B) 2	
F2\	(C) 4 (D) 3	(0)
52)	The inverse of (1 2 3 4) is	(A)
	(A) (4 3 2 1) (B) (2 3 4 1) (C) (1 3 2 3)	
E3/	(C) (1 2 3 4) (D) (1 4 3 2)	(6)
53)	If R is a ring then trivial subrings of R are	(C)
	(A) $\{0\}$ (B) R (C) $\{0\}$ and R (D) none of these	
54)	(C) $\{0\}$ and R (D) none of these Let I_1 and I_2 are any two ideal of a ring R , then which of the	(A)
J -1)	following is incorrect?	(~)
	(A) $I1 \cup I2$ is an ideal of R	
<u> </u>	1 ()	1

	(D) I a Lie on ideal of D	
	(B) $I_1 \cap I_2$ is an ideal of R	
	(C) $I_1 + I_2$ is an ideal of R	
\	(D) I_1I_2 is an ideal of R	(5)
55)	If I is an ideal in a ring R , then	(B)
	(A) $\frac{I}{R}$ is a ring (B) $\frac{R}{I}$ is a ring	
	(C) RI is a ring (D) None of these	
56)	If R is a commutative ring with unit element, M is an ideal of R	(B)
	and $\frac{R}{M}$ is a field, then	
	(A) M is minimal ideal of R	
	(B) M is maximal ideal of R	
	(C) M is not a maximal ideal of R	
	(D) None of these	
57)	If <i>R</i> is a commutative ring with unit element, then	(A)
	(A) every maximal ideal is prime ideal	
	(B) every prime ideal is maximal ideal	
	(C) every ideal is prime ideal	
	(D) every ideal is maximal ideal	
58)	If <i>R</i> is a finite commutative ring, then	(B)
	(A) every maximal ideal is prime ideal	
	(B) every prime ideal is maximal ideal	
	(C) every ideal is prime ideal	
Ε0\	(D) every ideal is maximal ideal	(4)
59)	Let $H_4 = \{4n \mid n \in \mathbb{Z}\}$ is aideal in the ring of even	(A)
	integers. (A) maximal	
	(B) prime	
	(C) neither prime nor maximal	
	(D) none of these	
60)	Let $H_4 = \{4n \mid n \in \mathbb{Z}\}$ is aideal in the ring of integers.	(C)
	(A) maximal	
	(B) prime	
	(C) neither prime nor maximal	
	(D) none of these	
61)	If $R = \mathbb{Z}_6$ then $I = {\overline{0}, \overline{3}}$ is a	(A)
	(A) ideal in $R = \mathbb{Z}_6$ (B) not ideal in $R = \mathbb{Z}_6$	
	(C) ideal in $R = \mathbb{Z}$ (D) None of these	
62)	Choose the ideals in a ring $R = Z$.	(D)
	(A) $I = 2\mathbb{Z}$ (B) $I = 3\mathbb{Z}$	
	(C) $I = 5\mathbb{Z}$ (D) All of these	
63)	(-)::::::::::::::::::::::::::::::::::::	
	Which of the following is prime ideal of a ring	(C)
		(C)
	Which of the following is prime ideal of a ring	(C)
	Which of the following is prime ideal of a ring $R = \mathbb{Z}$.	(c)

	$a, b \in S$, then	
	(A) only $ab \in S$ (B) only $a - b \in S$	
	(C) $ab \in S$ and $a - b \in S$ (D) none of these	
65)	Consider a quotient ring	(B)
	$\frac{\mathbb{Z}}{H_4} = \{H_4, H_4 + 1, H_4 + 2, H_4 + 3\},\$	
	Where, $\{H_4 = 4n \mid n \in \mathbb{Z}\}$ and $(\mathbb{Z}, +, *)$ is the ring of integers. The	
	additive identity in the quotient ring $\frac{\mathbb{Z}}{H_4}$ is	
	(A) $H_4 + 1$ (B) H_4	
	(C) $H_4 + 2$ (D) $H_4 + 3$	
66)	The ring $(\mathbb{Z}, +, *)$ has unity1, but its subring $(E, +, *)$ of even	(D)
	integers has	
	(A) unity 1 (B) unity 2 (C) unity 0 (D) no unity	
	(C) unity 0 (D) no unity	(-)
67)	If $R = Ring \ of \ integers$, then characteristic of R is	(A)
	(A) 0 (B) 1	
601	(C) 2 (D) 3	(D)
68)	The characteristic of the ring of integers (R) and ring of even	(D)
	integers (E) is such that $(A) abB < abE$ $(B) abB + abE$	
	(A) $chR < chE$ (B) $chR \neq chE$	
69)	(C) $chR > chE$ (D) $chR = chE$ What is the characteristic of the ring of even integers?	(D)
03)	(A) 6 (B) 4	(6)
	(C) 2 (D) 0	
70)	The characteristic of the ring \mathbb{Z}_6 is	(A)
	(A) 6 (B) 5	
	(C) 2 (D) 3	
71)	If integral domain D is of finite characteristic, then its	(C)
	characteristic is	
	(A) odd number (B) even number	
72\	(C) prime number (D) natural number	(D)
72)	A non-empty subset I of a ring R is called a right ideal of R if (A) $a, b \in I \Rightarrow a - b \in I$ (B) $a \in I$, $r \in R \Rightarrow ar \in I$	(B)
	(A) $a, b \in I \Rightarrow a - b \in I$ (B) $a \in I, r \in R \Rightarrow ar \in I$ (C) $a \in I, r \in R \Rightarrow ra \in I$ (D) both (A) and (B)	
73)	Read the following statements and choose the correct option.	(C)
, 3,	Statement I: An ideal is always a subring.	
	Statement II: A subring may not be an ideal.	
	(A) Only statement I is true	
	(B) Only statement II is true	
	(C) Both (A) and (B) are true	
	(D) None of these	
74)	If $\theta: R \rightarrow R'$ be a homomorphism (where R and R' be the two rings	(A)
	with $0, 0$ ' as zeros respectively) then	
	(A) $\theta(0) = 0', \ \theta(-a) = -a$ (B) $\theta(0) = 0, \ \theta(-a) = -a$	
	(C) $\theta(0) = 0', \ \theta(-a) = a$ (D) $\theta(0') = 0, \ \theta(-a) = -a$	

75)	Let $(R, +, *), (R', *, o)$ be two rings. A mapping $\theta : R \rightarrow R'$ is called	(B)
	a homomorphism if for any $a, b \in R$.	
	(A) $\theta(a+b) = \theta(a) + \theta(b)$ (B) $\theta(a+b) = \theta(a) * \theta(b)$	
	$\theta(a*b) = \theta(a) * \theta(b) \qquad \qquad \theta(a*b) = \theta(a) \ o \ \theta(b)$	
	(C) $\theta(a+b) = \theta(a) + \theta(b)$ (D) $\theta(a*b) = \theta(a) \ o \ \theta(b)$	
76)	Let $f: R \rightarrow R'$ be a homomorphism of R onto R' with $\ker f = 0$. Then f	(B)
	is	
	(A) an endomorphism (B) an isomorphism	
	(C) an automorphism (D) none of these	
77)	Let $f: R \rightarrow R'$ be a homomorphism of R in R' . Then f is a one-one	(C)
	map if and only if	
	$(A) \ker f > 0 \qquad (B) \ker f < 0$	
	(C) $\ker f = 0$ (D) none of these	
78)	Read the following statement and choose the correct option.	(B)
	Statement: Let $R = Z$ (ring) and $P = pZ$ (ideal), where, p is a	
	prime. Then P is a prime ideal in the ring R .	
	(A) False (B) True (C) Can't say (D) None of these	
79)	Read the following statement and choose the correct option.	(A)
79)	Statement: For any ideals I and J of a ring R , the sum $I + J$ and	(A)
	the product IJ are ideals in a ring R .	
	(A) True (B) False	
	(C) Can't say (D) None of these	
80)	Two polynomials	(C)
	$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$, $a_n \neq 0$ and $g(x) = b_0 + \dots$	
	$b_1x + b_2x^2 + \cdots + b_nx^n$, $b_n \neq 0$ will be equal if and only if	
	(A) $m=n$ (B) $a_i = b_i \ \forall i$	
	(C) both (A) and (B) (D) none of these	
81)	If the ring R is an integral domain, then	(A)
	(A) R [x] is an integral domain	
	(B) $R[x]$ is not an integral domain	
	(C) $R[x]$ is a field	
	(D) $R[x]$ is a commutative division ring	
82)	Read the following statements and choose the correct option.	(C)
	Let $R[x]$ be the ring of polynomials over a ring R then	
	Statement I: R is commutative if and only if	
	R[x] is commutative.	
	Statement II: R has unity if and if $R[x]$ has unity. (A) Only statement I is true	
	(B) Only statement II is true	
	(C) Both (A) and (B) are true	
	(D) None of these	
83)	Over the field of real numbers the polynomial $x^2 + 25$ is	(A)
	(A) irreducible	
	(B) reducible	
	(B) reducible	

	(C) neither reducible nor reducible (D) none of these	
84)	Let $f(x) = 1 + 2x - 2x^2$ and $g(x) = 2 + 3x + 2x^2$ be two members of $Z[x]$, then degree of $f(x) + g(x) =$	(B)
	(A) 0 (B) 1 (C) 4 (D) 5	
85)	Consider the ring $R = \{0, 1, 2, 3, 4, 5\}$ modulo6 and $f(x) = 1 + 2x^3$, $g(x) = 2 + x - 3x^2$ be two polynomials in $R[x]$ of degree 3 and 2 respectively. Then degree of $f(x) + g(x) =$ (A) 0 (B) 1	(D)
86)	(C) 5 (D) 4 Which of the following polynomials of $Z[x]$ are irreducible over Z . (A) $x^2 + 1$ (B) $x^2 + 4$ (C) $x^2 + 25$ (D) All of these	(D)
87)	$f(x) \in F[x]$ a polynomial of degree 2 or 3 is reducible if and only if $a \in F$ such that $(A) f(a) = 0$ $(B) f(a) \neq 0$ $(C) f(a) > 0$ $(D) f(a) < 0$	(A)
88)	The fact that $f(a) = 0$ is also expressed by saying that a is (A) a root of the polynomial $f(x)$. (B) a factor of the polynomial $f(x)$. (C) both (A) and (B) (D) None of these	(A)
89)	The polynomial $1 + x + 2x^2$ in $Z_3[x]$ (A) is irreducible (B) is reducible (C) is neither reducible nor reducible (D) none of these	(A)
90)	Over the field of complex numbers the polynomial $x^2 + 16$ is (A) irreducible (B) reducible (C) neither reducible nor reducible (D) none of these	(B)
91)	Over the field of rational numbers the polynomial $x^2 + 2$ is (A) irreducible (B) reducible (C) neither reducible nor reducible (D) none of these	(A)
92)	Which of the following(s) is/are reducible over. (A) $x^2 + 16$ (B) $x^2 + 25$ (C) $x^2 + 1$ (D) All of these	(D)
93)	Which of the following is irreducible over \mathbb{Z} . (A) $x^2 - 5x + 6$ (B) $x^2 - 7x + 12$ (C) $x^2 - 9x + 20$ (D) None of these	(D)

94)	Read the following statement and choose the correct option.	(B)
	Any polynomial of degree 1 is irreducible over a field F .	
	(A) False (B) True	
05)	(C) Can't say (D) None of these	(D)
95)	Which of the following(s) is/are reducible over \mathbb{Z} .	(D)
	(A) $x^2 - 5x + 6$ (B) $x^2 - 7x + 12$ (C) $x^2 - 9x + 20$ (D) None of these.	
0.5)	(C) $x^2 - 9x + 20$ (D) None of these.	(=)
96)	The polynomial $x^4 + x + 1$ in $Z_2[x]$	(B)
	(A) is irreducible	
	(B) is reducible	
	(C) is neither reducible nor reducible	
07)	(D) none of these Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ be a polynomial with	(6)
97)	integer's coefficients	(C)
	(i.e. $f(x) \in R[x]$). Suppose that for some prime number p , $p a_0, p a_1,, p a_{n-1}, p a_n, p^2 $ then $f(x)$ is polynomial over	
	the ring of rationals.	
	(A) neither reducible nor reducible	
	(B) reducible	
	(C) irreducible	
	(D) none of these	
98)	Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_mx^m$ be any non-zero	(A)
,	polynomial in $R[x]$. Then $f(x)$ has degree m if	
	$(A) a_m \neq 0, a_i = 0 \ \forall i > m$	
	(B) $a_m = 0$, $a_i \neq 0 \ \forall i > m$	
	(C) $a_m = 0$, $a_i = 0 \ \forall i > m$	
	(D) $a_m \neq 0$, $a_i \neq 0 \ \forall i > m$	
99)	The polynomial $a_0 + a_1x + a_2x^2 = 2 + 4x + x^2$ is irreducible over	(A)
	Q, if we take	
	(A) $p = 2$ (B) $p = 3$	
	(C) $p = 7$ (D) $p = 4$	
100)	The polynomial $f(x)$ is divisible by $x - a$ then	(C)
	f (a) =	
	(A) 2 (B) 5	
_	(C) 0 (D) a	
101)	If $f(x) = 1 + 2x + 3x^2$ and $g(x) = 7x + 2x^2 + 3x^3$ are two	(B)
	polynomials over $(\mathbb{Z}_6, +_6, *_6)$ then $\deg(f(x) + g(x)) = \dots$	
	(A) 2 (B) 3	
402\	(C) 5 (D) 4	(D)
102)	The zeros of the polynomial $x^2 - 4x - 12$ over field of real	(B)
	numbers are	
	(A) $3, -4$ (B) $6, -2$	
1021	(C) $-6, 2$ (D) $-3, 4$	(C)
103)	The characteristic of the ring $(3\mathbb{Z}, +, \times)$ is	(C)
	(A) 3 (B) n	

	(C) 0 (D) none of these	
104)	If F is a field then $F[x]$ is	(A)
	(A) an integral domain (B) a field	
	(C) may not be field (D) none of these	
105)	The zeros of the polynomial $x^2 - 4x - 12$ over the field of real	(C)
	numbers are	
	(A) 1, 2 (B) 2, 3	
	(C) $4, 3$ (D) $-4, -3$	
106)	The characteristic of ring integers $(\mathbb{Z}, +, *)$ is	(C)
	(A) 2 (B) a prime number	
	(C) zero (D) none of these	
107)	If $f(x) = 2x^3 + x^2 + 3x - 2$ and	(A)
	$g(x) = 3x^4 + 2x + 4$ be two polynomials over \mathbb{Z}_6 , then	
	$\deg(f(x) * g(x)) = \dots$	
	(A) 5 (B) 6	
	(C) 7 (D) none of these	
108)	Let $f(x) = 2x^3 + 4x^2 + 3x + 3$ be a polynomial over \mathbb{Z}_5 then f	(B)
	(4) =	
	(A) 0 (B) 2	
	(C) 4 (D) 1	
109)	The characteristic of Boolean ring is	(B)
	(A) 0 (B) 2	
	(C) 4 (D) 1	
110)	If $f(x) \in F[x]$ and $a \in F$, for a field F , then $x - a$ divides $f(x)$ if and	(A)
	only if	
	$(A) f(a) = 0 \qquad (B) f(a) \neq 0$	
	$(C) f(a) = 1 (D) f(a) = \infty$	